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Abstract: In the early phases of the COVID-19 pandemic, vaccine accessibility was limited, impact-
ing large metropolitan areas such as Los Angeles County, which has over 10 million residents but 
only nine initial vaccination sites, which resulted in people experiencing long travel times to get 
vaccinated. We developed a mixed integer-linear model to optimize site selection, considering eq-
uitable access for vulnerable populations. Analyzing 277 zip codes, our model incorporated factors 
such as car ownership, ethnic group disease vulnerability, and the Healthy Places Index, alongside 
travel times by car and public transit. Our optimized model significantly outperformed actual site 
allocations for all ethnic groups. We observed that White populations faced longer travel times, 
likely due to their residences in more remote, less densely populated areas. Conversely, areas with 
higher Latino and Black populations, often closer to the city center, benefited from shorter travel 
times in our model. However, those without cars experienced greater disadvantages. While having 
many vaccination sites might improve access for those dependent on public transit, that advantage 
diminished if people must search among many sites to find a location with available vaccines. 

Keywords: Facility location, Accessibility, Route Selection, Vaccine Distribution, Disease Manage-
ment 
 

1. Introduction 
Coronavirus disease 2019 (COVID-19) emerged as a global threat in late 2019, quickly 

evolving into a pandemic that deeply impacted modern life. The virus's rapid spread 
across the globe, due to its transmissibility and initial absence of population immunity, 
placed massive pressure on healthcare systems, disrupted economies, and altered social 
norms.  

In response to the crisis, researchers and pharmaceutical companies worldwide have 
developed vaccines and therapies to combat the virus and treat disease.  As vaccines be-
came available in early 2021, pharmaceutical companies, government agencies and 
healthcare organizations needed to rapidly develop the capacity to manufacture, distrib-
ute and safely administer vaccines to eligible people. The initial shortage of capacity 
meant that vaccine eligibility, allocation and access were all limited and prioritized.  

This paper examines one aspect of prioritization: selection of mass vaccine admin-
istration sites (i.e., locations where people are vaccinated) within metropolitan regions. 
For example, in Los Angeles (LA) County, just nine sites initially served more than 10 
million people. While some people could travel to sites with relative ease, others resided 
more than an hour from their nearest site.  We seek to understand how access varied by 
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ethnicity and risk of severe disease, and how access might have improved through opti-
mization of vaccine administration site locations. 

 
1.1 Research Objectives   

Our aim is to develop and assess a methodology to optimize the location of mass 
vaccine administration centers, taking into consideration impacts on different population 
groups. We consider household automobile availability, travel time, distances, costs, and 
disparities among ethnic groups, showing the distributional effects of solutions based on 
different objective functions. In addition, socioeconomic factors, environment, and 
healthcare infrastructure contribute to an uneven distribution of health risks and re-
sources in regions. Areas with lower socioeconomic status experience more chronic dis-
ease and have more limited access to healthcare facilities.  To represent variations in the 
risk of severe disease, we incorporate the Healthy Places Index (HPI) [1] in our analysis, 
which serves as a metric of healthcare vulnerability in localities. Last, we consider the 
possibility that people will travel further than the nearest administration site when neces-
sary to obtain a vaccine appointment (as occurred when COVID-19 vaccines first became 
available). 

In sum, our aim is to develop methods and insights to inform public health policies 
and decisions that improve access to vaccines through mass administration sites, consid-
ering variation in access among different population groups. We utilize COVID-19 in LA 
County as a case study, but our goal is to develop insights that inform future interventions 
against highly transmissible diseases. 

 
1.2 Literature Review 

Optimization models have been increasingly utilized in healthcare to improve health 
outcomes and increase efficiency and effectiveness. Applications include resource alloca-
tions and strategic planning of healthcare facilities’ locations, especially during global 
pandemics.  From our review, most recent research on the topic has focused on COVID-
19.   

1.2.1 Vaccine Allocation 
Spatial analysis and accessibility have been a major part of the research on vaccine 

allocation as it helps identify disparities in vaccination rates and areas with highly vul-
nerable population groups. Mollalo et al. (2021) [2] conducted a comprehensive spatial 
analysis, highlighting significant geographic disparities in COVID-19 vaccination rates. 
Factors such as disparity in access to vaccine supply, healthcare services, and vaccine hes-
itancy were identified as major contributors to these disparities. Another study by Mollalo 
and Tatar (2021) [3] employed a GIS-based approach to delve into the spatial heterogene-
ity of vaccination rates across U.S. counties, using the Social Vulnerability Index (SVI) as 
a key metric. Their findings underscored the relationship between socioeconomic factors 
and vaccination rates, which could help achieve more targeted vaccine allocation plans. 
Geographic information system (GIS) technology was utilized in a case study of the city 
of Warsaw, Poland by Krzysztofowicz and Osinska-Skotak (2021) [4], where the authors 
visualized the spatial allocation of COVID-19 vaccines, which could be crucial in deter-
mining the sites that have the maximum reach and efficiency. Alemdar, Kaya, Çodur, 
Campisi, and Tesoriere (2021) [5] emphasized vaccine logistics and selection of vaccine 
administration sites. They introduced a three-step method for site selection, which in-
volved defining eight evaluation criteria recommended by advisory boards. These criteria 
were then weighted, leading to the designation of potential sites and creating a suitability 
map for service areas. Cheng, Tao, Lian, and Huang (2021) [6] evaluated spatial accessi-
bility to urban medical facilities in China using a detailed transportation network. Utiliz-
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ing Kriging interpolation and cluster analysis, they found most areas had poor accessibil-
ity, though regions near subways were found to be better. They suggested enhancing the 
transportation network for improved medical facility access. 

1.2.2 Optimization of COVID-19 Vaccine Center Locations  
COVID-19 vaccine center locations have emerged as a significant area of study since 

the global pandemic emerged in 2020. Studies have employed mathematical modeling 
techniques, incorporating various factors, such as travel times, distances, and operational 
costs to identify optimal locations that would help reduce the impact of the pandemic. A 
study by Bravo, Hu, and Long (2022) [7] emphasized reducing travel distances to improve 
vaccination rates, suggesting using retail pharmacies and Dollar stores as sites. This ap-
proach would, by their estimates, bring 25% more people within a kilometer of a vaccine 
location, potentially increasing vaccinations by 5%. Risanger et al. (2021) [8] introduced a 
unique function to calculate the fraction of the population willing to travel to vaccination 
sites. Their insights into travel behaviors for different trip distances could be instrumental 
in public health facility planning. In another study by Bertsimas et al. (2021) [9], the DEL-
PHI epidemiological model was developed, integrating it with an optimization strategy 
for vaccine allocation. Using a compartmental disease model, they forecasted pandemic 
dynamics and assessed vaccination impacts based on vaccine efficacy. The authors esti-
mated that their approach would enhance vaccination campaign effectiveness by 20%, 
potentially saving 4,000 U.S. lives in three months.  

Alghanmi et al. [10] surveyed various optimization models for selecting administra-
tion centers, focusing on minimizing travel times, distances, and related costs. Further-
more, Lusiantoro et al. (2022) [11] developed a bi-objective linear model, focusing on max-
imizing vaccine coverage and minimizing travel distance. When applied to Yogyakarta, 
Indonesia, the authors found that solely prioritizing high COVID-19 case areas led to 
suboptimal coverage, indicating a need to consider additional factors. Another multi-ob-
jective optimization model was proposed by Tang, Li, Bai, Liu, and Coelho (2022) [12], 
where the authors tried to optimize the operational costs of vaccine sites and the total 
travel distance for multi-period COVID-19 vaccination planning. A framework was also 
proposed to help decision-makers choose sites based on real-life limitations or preferences 
while optimizing the service level. The authors predicted a 9.3% decrease in operational 
cost and a 36.6% decrease in the total travel distance.  

At a municipality level, Cabanilla, Enriquez, Mendoza, and Mendoza (2022) [13] pre-
sented optimal locations of vaccine sites, where they considered existing public facilities, 
such as hospitals and schools, as potential sites. They divided the town into several 
smaller areas and assigned weights to densely populated and highly contagious areas 
with higher case counts. The weighting factors were then incorporated into a distance 
minimization objective function. A location-allocation model was developed by Faisal, 
Alshammari, Alotaibi, Alghanmi, Bamsagm, and Bin Yamin (2022) [14] to improve the 
allocation of COVID-19 vaccine centers in Jeddah, Saudi Arabia. The authors introduced 
a maximal coverage model with and without facility capacity constraints. They applied 
the model with different impedance cutoffs, which are the maximum travel times required 
from demand points to vaccine centers. Moreover, the authors explored the minimum 
number of facilities needed to satisfy all the demand points within the city by minimizing 
the overall transportation time and distance. 
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1.3 Research Contribution 
Our research contributes to research on selection of sites for mass vaccination by ac-

commodating various prioritization methods to achieve the desired health goals. Second, 
we consider the consequences of people electing to be vaccinated at sites that are not clos-
est to home, instead choosing from a set of nearest sites. Our intent is to understand how 
both site selection and objective functions are affected by a willingness of people to travel 
further than their closest site to obtain a vaccine. Our analysis also includes analysis of 
household car availability and its effects on travel time by ethnic group.  Last, we com-
pare optimized solutions to actual sites utilized in Los Angeles County.  

 

2. Materials and Methods 
In this section we formulate a Mixed Integer Programming (MIP) model that aims to 

optimize locations of vaccine centers against a cost-minimization objective in a large met-
ropolitan area. The model assumes that each zone in a studied region represents both a 
potential site for COVID-19 vaccine administration and a population group that needs to 
be served by at least one vaccination administration center.  Our model is intended to 
represent a time horizon when vaccination sites remain static.  We assume that all vac-
cines available within any time period are administered within the time period. 

2.1 Optimization Model 
Based on the stated assumptions, our decision variables represent the binary decision 

for whether or not each zone contains a vaccination center and the total number of vaccine 
doses allocated to each center, and in turn to the population in each zone. Our objective 
function represents the sum of three costs (1) weighted transportation cost from home to 
site and back, (2) weighted travel time from home to site and back, and (3) fixed costs of 
opening sites.  The weights are scenario dependent, each representing a different priori-
tization scheme: (1) population only, (2) HPI, and (3) a COVID-19 vulnerability index. 
Constraints represent the total number of vaccine doses available and a strategy to allocate 
them per the selected prioritization method, a maximum and minimum number of vac-
cine centers, a budget constraint to ensure the cost of opening the sites does not exceed 
the allocated budget, and a constraint to link vaccine allocations to the actual assignment 
of areas to centers. Our model also utilizes a flexibility parameter, F, which specifies the 
number of centers individuals can choose (with equal likelihood) from for administration 
of vaccines, as a way to capture effects of site-specific limitations on availability of vaccine 
appointments.  

2.1.1 Model Sets, Parameters, and Decision Variables 

Sets: 
T: Set of time periods, t 
A: Set of all zip codes areas, i 
S: Set of all potential sites, j 

Parameters: 
TBij: Travel time by transit between area i and site j 
TCij: Travel time by car between area i and site j 
DDij: Distance between area i and site j. 
Oi: Percentage of car ownership at area i 
Wi: Priority assigned for area i. 
Pi: Population of area i. 
K: Available Budget for opening sites. 
Qt: Available quantity of the vaccine at time t. 
TP: Total population of LA county 
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C: the cost of opening a site. 
F: A flexibility parameter indicating the maximum number of sites people can select   
from. 
M: A large positive number.  
MS: the maximum number of allowable sites.  
LS: the minimum number of allowable sites. 
VT: the cost value of time. 
VD: the cost of traveled distance. 
VB: the cost of a public transit ticket. 
Decision Variables:  
Di: 1 if area i is selected as a site, 0 otherwise. 
Xij: 1 if area i is assigned to site j, 0 otherwise. 
Vijt: Allocated vaccines from site j to area i at time t 

2.1.2 Objective Function and Constraints 
We seek to optimize the following formulation, as explained below.   
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(1) 

Subject to: 
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 ×  𝑄𝑄𝑡𝑡 

, for i∈A, t∈T  (2) 
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≥ 𝐿𝐿𝐿𝐿   (4) 
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𝑆𝑆

𝑗𝑗

≥ 𝐹𝐹 , for i∈A  (5) 

𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝐷𝐷𝑗𝑗  , for i∈A, j∈S  (6) 

�𝐷𝐷𝑗𝑗

𝑆𝑆

𝑗𝑗

𝐶𝐶 ≤ 𝐾𝐾   (7) 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑖𝑖𝑀𝑀 , for i∈A, j∈S, t∈T  (8) 

𝐷𝐷𝑗𝑗 ≥ 0 , for j∈S (9) 

𝑋𝑋𝑖𝑖𝑖𝑖 = {0,1} , for i∈A, j∈S (10) 
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𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 , for i∈A, j∈S, t∈T. (11) 

 
The first term in the objective function (∑ 𝑫𝑫𝐣𝐣𝐂𝐂𝑺𝑺

𝒋𝒋 ), calculates the total cost resulted from 
opening the selected sites. The second term, (∑ ∑ (𝟏𝟏

𝐅𝐅
𝐗𝐗𝐢𝐢𝐢𝐢𝐏𝐏𝐢𝐢(𝐎𝐎𝐢𝐢𝐓𝐓𝐓𝐓𝐢𝐢𝐢𝐢 + (𝟏𝟏 − 𝐎𝐎𝐢𝐢)𝐒𝐒

𝐣𝐣
𝐀𝐀
𝐢𝐢 𝐓𝐓𝐓𝐓𝐢𝐢𝐢𝐢) × 𝟐𝟐 ×

𝐕𝐕𝐕𝐕)), calculates the cost of time spent by people traveling to their F closest sites, assuming 
that households that own cars travel by car and households that do not own cars travel 
by public transit.  

 Means of travel are accounted for by multiplying the percentage of people who own 
cars by car travel time (TCij) and the remaining percentage by the public transit travel 
time, TBij. The whole term is then multiplied by 2 to account for round trips and then by 
the travel time cost parameter VT to convert time into cost. The whole term is divided by 
F to average the F possible destination centers that could be used by each person. The 
third term (∑ ∑ (𝟏𝟏

𝑭𝑭
𝑿𝑿𝒊𝒊𝒊𝒊𝑷𝑷𝒊𝒊𝑫𝑫𝑫𝑫𝒊𝒊𝒊𝒊

𝑺𝑺
𝒋𝒋 𝑶𝑶𝒊𝒊

𝑨𝑨
𝒊𝒊 × 𝟐𝟐 × 𝐕𝐕𝐕𝐕)) finds the distance costs for car operation. It is 

multiplied by 2 to account for the round trip and by VD, which is the cost per mile. The 
fourth term (∑ ∑ (𝟏𝟏

𝑭𝑭
𝑿𝑿𝒊𝒊𝒊𝒊𝑷𝑷𝒊𝒊𝑺𝑺

𝒋𝒋 (𝟏𝟏 − 𝑶𝑶𝒊𝒊)𝑨𝑨
𝒊𝒊 × 𝐕𝐕𝐕𝐕)) finds the total cost spent by transit users by 

multiplying the number of trips by the roundtrip cost of transit ticket VB.  
Constraint (2a) ensures an allocation strategy that treats all zones equally, whereby 

the ratio of the population of area i to the total population is multiplied by the available 
vaccine quantities Qt for the given period t. Constraint (3) sets the maximum allowable 
centers to MS. Constraint (4) sets the minimum possible centers to LS. Constraint (5) indi-
cates that each person will receive their vaccine from one of the F nearest centers. Con-
straint (6) is an upper bound constraint to link decision variables Xij and Dj. Constraint (7) 
sets the maximum budget for the costs of opening sites to K. In constraint (8), the amount 
of vaccines allocated is linked to the assignment between areas and sites so that vaccines 
are only allocated when there is an assignment, where M is an upper bound for Vijt. Con-
straints (9), (10), and (11) regulate the value of the decision variables. 

2.2 Data  
We have applied the model in Section 2.1 to LA County, utilizing public data sets 

readily available in the United States. Our analysis requires data on demographic charac-
teristics and locations of sub-areas of metropolitan regions.  Basic demographic charac-
teristics of postal zip codes (population, proportional distribution by ethnicity, and age 
group) were sourced from the U.S. Census Bureau [15].  Data from the 5-Year American 
Community Survey by the U.S Census Bureau [16] provided statistics on household car 
ownership per zip code, offering an indicator of how people might travel to vaccine cen-
ters. The Healthy Places Index (HPI) was sourced from the Public Health Alliance of 
Southern California [1]. It rates the zip codes of the county from 1 to 99, with higher scores 
indicating healthier regions. A COVID-19 vulnerability index was also developed based 
on CDC data [17], which provides rates of cases, hospitalizations and fatalities by racial 
group.  These rates were applied to individual zip codes, based on their racial character-
istics to produce a place specific vulnerability index. Vaccine administration data was 
sourced from the LA County Department of Public Health [18].   

The value of time used in our analysis equals 50% of LA County's average wage per mi-
nute, or $0.264 [19], as per the US Department of Transportation [20]. We used a driving 
cost per mile of $0.615, based on the American Automobile Association [21]. The public 
transit fare is $1.75 per trip.  

For visualization and spatial analysis, geographical data and shapefiles of LA County 
were sourced from the LA GeoHub [22].  Bing API was utilized to generate data on travel 
times and distances between LA County zip codes, for both automobile and public-transit. 
Utilizing population-weighted centroid from the Office of Policy Development and Re-
search [23] coordinates, three 277 by 277 matrices were generated by Bing Maps for car 
travel time, transit travel time, and distance. 
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2.3 Scenarios and Weights 
We explore three scenarios to demonstrate effects of various prioritization methods. 

These scenarios help understand the impact of different objectives on the outcomes. In 
Scenario One, the population alone serves as the weighting factor in the objective function, 
treating all people equally.  For this reason, the objective for Scenario One will be called 
unweighted. In Scenario Two, all areas are divided into five groups based on HPI percen-
tile, with each group representing 20% of the zones. The population of each area is multi-
plied by the weights in Table 1, which prioritize zones with the lowest HPI.  The middle 
zone (40th to 59th percentile) receive a weight of one.   

Table 1: Wi Calculations Using HPI 

Percentile Range Category Weighted Population (Wi) 

0.19 – 0 1 population x 1.5 

0.39 - 0.2 2 population x 1.25 

0.59 - 0.4 3 population x 1 

0.79 - 0.6 4 population x 0.75 

1 - 0.8 5 population x 0.5 

In Scenario Three, the weighting factor Wi is calculated based on the vulnerability of eth-
nicities to COVID-19 (Centers for Disease Control and Prevention, CDC [17]).  Table 2 
outlines the risks of infection, hospitalization and death for COVID-19 by race and ethnic-
ity. The “x” in these values shows the risk ratio compared to the White, non-Hispanic race. 
For instance, Black non-Hispanic individuals are 1.1 times more likely to be infected, two 
times more likely to be hospitalized, and 1.6 times more likely to die from the virus than 
White individuals. These rates, combined with the racial compositions for the targeted 
areas of study, are used to calculate a COVID-19 racial vulnerability index. A weighted 
score for each of the three risks (cases, hospitalization, death) is computed by multiplying 
the rates from Table 2 by the proportion of each race for each area.  

Table 2: Racial Vulnerability to COVID-19 by CDC 

Race/Ethnicity 
American Indian or 
Alaska Native, Non-

Hispanic 
Asian, Non-Hispanic 

Black or African American, 
Non-Hispanic 

Hispanic or  
Latino 

Cases 1.6x 0.8x 1.1x 1.5x 

Hospitalization 2.4x 0.7x 2.0x 1.8x 

Death 2.0x 0.7x 1.6x 1.7x 

 We converted data derived from Table 2 into weights based on percentile groups, as 
with Scenario Two.  First the vulnerability cores (cases, hospitalizations and deaths) were 
combined into a single score that accounts for disease severity (0.15, 0.3, and 0.55 multi-
plied by hospitalization, and death relative risk).  Next, the computed risk for each zone 
was converted into five percentile groups, yielding Wi from 1 to 5, as before  
2.4 Modifications to MIP Formulation for Scenarios 

The weights for Scenarios two and three change the objective function and the first 
constraint of the MIP. The rest of the formulation is unchanged. The modified objective 
function and first constraint are as follows: 
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, for i∈A, t∈T (13) 

 

3. Results: Case Study Application to LA County 
As mentioned, LA County is the most populous county in the United States, with 

over 10 million residents. According to the US Census Bureau [24], the County consists of 
49% Hispanic or Latino, 25.5% White, 7.6% Black, 14% Asian, and less than 1% American 
Indian and Alaska Native. Of the approximately 295 zip codes that make up LA County, 
277 are considered for this study. This selection excludes zip codes with insufficient data 
and those on Catalina Island, given its unique accessibility constraints via ferries and air-
planes.  

 Our case study spanned a horizon of 12 biweekly periods, starting from the day the 
first vaccine was approved by the Food and Drug Administration (FDA) on 12/11/2020 
[25] and extending until 5/30/2021, the actual number of vaccines administered in the 
county in each period. This period was chosen to focus on the initial phase of the pan-
demic when sites and vaccines were limited.  For our analysis, we assumed C and K, 
denoting site opening cost and total budget equaled $500,000 and $10 million, respec-
tively. Actual costs should be based on real-life budget data. We solved the MIP using 
AMPL, which produced computation times of 70 seconds on an M2 MacBook Air. 
3.1 Comparison of Costs and Travel Times 

The three defined scenarios yielded varying results, highlighting the intricate balance 
between optimizing cost, serving highly populated areas, and prioritizing populations 
based on selected health and social vulnerabilities. Table 3 shows the total cost and its 
breakdown for all three scenarios, both unweighted (objective function for Scenario One) 
and measured according to each scenario’s objective (Objective Function Z), with F = 3, 
MS = 20, LS = 7, K = $10 million and C = $500,000.   In all of our solutions, the optimal 
number of sites equaled MS, due to the relatively high transportation cost relative to con-
struction cost. 

Table 3: Cost Breakdown by Scenario in Million $s 

Scenario 
Construction 

Cost  

Travel 
Time 
Cost 

Travel Distance 
Cost 

Transit 
Tickets 

Cost 

Total Cost 
(Unweighted) 

Objective Function Z 
(Weighted) 

1 

10 

89.6 93.7 

1.49 

194.8 194.8 

2 90.3 94.6 196.4 204 

3 92.6 95.9 200 182.3 
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The varying results across the three scenarios underscore trade-offs. Scenario One, when 
all people are weighted equally, yielded the lowest unweighted cost without considering 
other factors such as health and social indices. On the other hand, scenario three produced 
the highest unweighted cost while lowering access costs for highly vulnerable people to the 
virus.  Thus, while Scenario Three produces longer travel times and distances on average 
among all people, it reduces these costs for the most vulnerable people. Figure 1 shows 
the optimal locations for Scenario One.  

 
Figure 1. Scenario One Optimal Locations 

The first scenario concentrates vaccination sites in areas with dense population, in 
central Los Angeles. Many sites are found in the downtown area and other dense urban 
zip codes. Nevertheless, some sites are located in the suburbs, which provides accessibility 
to residents living outside the central urban area, but at greater distance, particularly in 
northern LA County. The second scenario also concentrated sites in the central zip codes, 
where the HPI index is relatively low compared to the outlying zip codes. However, more 
sites were located in the west side of the County than in the first scenario. A slight change 
in the suburban centers exists between the two scenarios. In scenario 3, the locations are 
somewhat more scattered across the county. 

The unweighted cost increase from Scenario One to Scenario Three shows the balance 
between minimizing travel costs on average versus preferentially serving those who are 
most vulnerable to disease. While prioritizing the average person might be cost-effective, 
it might not yield the best public health outcome.  Table 4 provides average times and 
distances for each scenario.  Because only Scenario One optimizes this objective, it pro-
duces the lowest values.  The other scenarios would produce optima relative to their sce-
nario specific weights. 
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Table 4: Average Travel Times and Distances for the Scenarios in Minutes and Miles 

Scenario 
Avg Travel Time by 

Car 
Avg Travel Time by 

Transit 
Avg Distance 

1 14.9 44.1 8.2 

2 15 44.7 8.3 

3 15.3 46.1 8.5 

 
The relationship between the average travel times by car and transit, as well as the 

average distance with the populations and population densities of the zip codes are pre-
sented in scatterplots (Figures 2,3 and 4): 

 
                        (a)                                           (b) 

Figure 2. Scatterplots of Average Travel Time by Car by Zip Code: (a) versus Population; (b) versus 
Population Density. 

 
                        (a)                                           (b) 

Figure 3. Scatterplots of Average Travel Time by Transit by Zip Code: (a) versus Population; (b) 
versus Population Density 



Pre-print  FOR PEER REVIEW 11 of 20 
 

 

 
                        (a)                                           (b) 

Figure 4. Scatterplots of Average Distance by Zip Code: (a) versus Population; (b) versus Population 
Density 

3.2 Maximum Number of Vaccination Sites   
The model was tested with the number of allowed sites ranging between 7 and 40 for 

Scenario One. Figure 5 shows the objective function including total costs and cost by cat-
egory. In each case the number of selected sites equals the maximum allowed, due to the 
relative importance of minimizing travel costs. 

 
Figure 5. Cost by Type (Million $s) vs. Maximum Number of Sites 

Starting at 7 allowed sites, the total cost decreases as the maximum number of sites 
increases. The cost of opening sites increases linearly as more sites are added, which is 
expected since each additional site involves a fixed cost. The transit ticket cost is constant 
as the number of trips is unchanged and reflects the number of people who do not own 
cars, regardless of the number of sites. The travel time and distance costs decrease as more 
sites are opened, reflecting the reduced travel time and distances when more sites are 
spread across the county. The decrease in total cost and travel time and distance costs 
become less significant with each additional vaccination site.  
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Figure 6 shows a trend of reduction in the average travel time by transit and car and 
the average distance traveled as the number of sites increases. A significant reduction is 
observed in the average travel time for transit users, which demonstrates the importance 
of opening more sites to increase accessibility for people who rely on public transit. A less 
steep decrease is seen for car users since they are generally more mobile and less affected 
by the number of available centers. Overall, the results demonstrate the advantage of al-
lowing more vaccination sites, showing their benefits in terms of time and cost savings for 
the public. 

 
Figure 6. Average Travel Times and Distance vs. Maximum Number of Sites 

Table 5 compares total costs for different maximum site values for all scenarios ac-
cording to the unweighted objective. As the number of sites increases, the total costs de-
cline, primarily due to the significant contribution of time and distance costs to the overall 
cost, with Scenario One producing the minimum cost in each case.  

Table 5: Total Unweighted Cost for Different Max Sites for all Scenarios in Millions $ 

Scenario 
Maximum Sites Number 

7 15 20 25 35 

1 293.5 215 194.8 181.4 164.2 

2 293.5 215.9 196.4 184.4 166.9 

3 296.4 219.8 200 186.3 168.1 
  

3.3 Number of Sites People Choose From (F) 
Our second analysis models the effects of increasing F, changing the number of sites 

each resident can choose from, with MS= 20. The model was run with F=1 and F=5 to test 
how F affects the selection of sites and the objective function. In Figure 7 and 8, we show 
the selected sites when F=1, and F=5, respectively, for Scenario One.  
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Figure 7. Map of Optimal Sites when F=1 

 

 
Figure 8. Map of Optimal Sites When F=5 

As F increases, the model tends to cluster sites, as in Figure 8.  If people need to 
search among multiple sites for vaccine availability, the advantage of increasing MS dis-
appears, ultimately requiring people to travel further to receive a vaccine.  In the ex-
treme, when F=MS, all sites were close to each other. Table 6 provides the total weighted 
cost for F = 1, 3 and 5 and the three scenarios with MS = 20. The value of the objective 
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function gets worse as F increases. Utilizing more choices might help individuals receive 
vaccines sooner, but with the cost of longer trips.   

Table 6. Total Weighted Costs for Different F Values for all Scenarios in Million $ 

Scenario 
Flexibility Parameter (F) 

1 3 5 

1 122.7 194.8 245.3 

2 125.9 196.4 248.2 

3 127.5 200 247 

3.4 Comparison to the Actual LA County Vaccination Sites  
The model’s optimized solutions are compared to the actual mass vaccination sites 

in LA County. During the early phase of vaccination, nine locations (Figure 9) were estab-
lished to serve county residents [26].   

        
Figure 9. Map of Actual Mass Vaccination Sites in LA County 

Although the sites are scattered across the region, some highly populated areas had 
no nearby sites, particularly in the northern and northeastern parts of LA County. For 
comparison, our model was applied with a maximum of nine sites, matching the actual 
number.  Table 7 shows improvements of 16 to 18% in unweighted costs, travel times and 
distances. Compared to the optimal solution, the sites in Figure 9 are spread less equally 
within the county and are not optimally situated to serve areas with the highest concen-
trations of people.    
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Table 7: Comparison of Scenarios to Actual Sites (unweighted) 

Scenario 
Avg Travel 

Time by Car 

Avg Travel Time 

by Transit 

Avg  

Distance 

Travel 

Time Cost 

% Improvements 

in Avg Values 

Distance 

Cost 

Total cost  

(Including time,  

distance and opening) 

% Savings 

in Costs 

1 64.6 19.6 13.9 113 M 18 149.5 M 268.5 M 17 

2 64.4 19.6 13.9 113.7 M 18 149.4 M 269 M 17 

3 67.3 19.6 13.9 114.7 M 17 150 M 270.1 M 16 

Actual 

Sites 
79.9 25.3 15.7 147.7 M - 170 M 323.7 M - 

3.5 Comparisons Across Racial Groups for Nine Sites 
 We analyzed the average distance and travel time by racial group for all three sce-

narios as well as the actual selected sites. Tables 8 and 9 show results when MS = 9 and 
F=1 and F=3, respectively.  In addition, Tables 10 through 14 show the percentage of 
transit, car, and all travelers who spend more than 30 minutes traveling to get vaccinated 
(one way), representing those who experience more extreme travel times and distances.   

Table 8: Average Times and Distance for Racial Groups when MS =9 and F=1 

 

   Average Travel  Average for all Races Latino White Black American Indian Asian  

Scenario 
One 

Car (Time Min.) 13.6 12.9 15.4 12.8 14.0 13.5 
Transit (Time Min.) 34.1 33.1 37.8 31.6 34.0 33.6 
Overall (Time Min.) 15.4 14.8 17.0 14.7 15.7 15.1 
Car Distance (Miles) 7.0 6.5 8.3 6.5 7.4 6.3 

Scenario 
Two 

Car (Time Min.) 13.8 12.6 16.0 12.5 13.9 14.4 
Transit (Time Min.) 32.1 30.5 37.3 28.4 31.7 33.1 
Overall (Time Min.) 15.3 14.2 17.6 14.1 15.5 15.9 
Car Distance (Miles) 7.1 6.3 8.7 6.2 7.4 7.6 

Scenario 
Three 

Car (Time Min.) 14.3 14.6 14.3 14.3 14.8 13.4 
Transit (Time Min.) 37.4 39.3 35.9 35.6 37.4 33.5 
Overall (Time Min.) 16.3 16.9 15.9 16.5 16.8 15.0 
Car Distance (Miles) 7.2 7.5 7.2 7.1 7.5 6.0 

Actual 
LA Sites 

Car (Time Min.) 19.3 18.6 21.6 19.0 22.8 17.5 
Transit (Time Min.) 47.0 45.3 54.7 43.1 57.0 44.1 
Overall (Time Min.) 21.7 21.1 24.0 21.5 25.7 19.6 
Car Distance (Miles) 9.4 9.1 10.8 9.4 12.8 8.0 
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 Table 9: Average Times and Distance for Racial Groups when MS = 9 and F=3 

 

Table 10: Percentage of Entire Population Spending More than 30 Minutes to Vaccination Site (MS  
= 9) 

 
% of Transit Users 
Spending above 30 
minutes One Way 

% of Car Users Spending 
above 30 minutes One 

Way 

Overall % 
of both  

F=1 

SC 1 59.34% 0.51% 5.45% 
SC 2 57.22% 0.59% 5.35% 
SC 3 62.66% 0.65% 5.86% 

Actual 76.10% 5.53% 11.39% 

F=3 

SC 1 84.08% 5.07% 11.65% 
SC 2 88.31% 5.00% 11.94% 
SC 3 90.75% 5.46% 12.56% 

Actual 99.22% 12.22% 19.37% 

 

Table 11. Percentage of Transit Users Spending More Than 30 Minutes by Racial Group (MS = 9) 

 % of Transit Riders Spending Above 30 Minutes One Way 
Latino White Black AI Asian  

F=1 

SC 1 59.7% 63.8% 57.6% 54.0% 51.7% 
SC 2 54.6% 66.8% 49.4% 52.1% 57.8% 
SC 3 67.6% 57.5% 65.7% 58.6% 48.6% 

Actual 75.2% 86.8% 54.0% 78.2% 77.9% 

F=3 

SC 1 82.2% 90.1% 78.7% 82.3% 86.0% 
SC 2 86.4% 93.7% 85.1% 89.1% 89.5% 
SC 3 90.4% 91.9% 89.7% 91.0% 91.0% 

Actual 98.9% 99.9% 98.3% 99.9% 99.9% 
 

   Average Travel  Average for all Races Latino White Black American Indian Asian  

Scenario 
One 

Car (Time Min.) 18.6 17.8 20.4 18.5 22.5 18.2 
Transit (Time Min.) 51.1 49.0 58.0 51.9 62.1 48.1 
Overall (Time Min.) 21.4 20.6 23.1 21.9 25.8 20.5 
Car Distance (Miles) 13.2 12.5 14.8 13.3 17.5 12.8 

Scenario 
Two 

Car (Time Min.) 18.7 17.7 20.5 18.4 21.2 18.6 
Transit (Time Min.) 51.7 49.2 58.6 51.7 58.6 50.6 
Overall (Time Min.) 21.5 20.6 23.2 21.9 24.4 21.1 
Car Distance (Miles) 13.2 12.4 14.8 13.2 16.1 13.2 

Scenario 
Three 

Car (Time Min.) 18.7 18.2 20.1 18.9 22.6 17.6 
Transit (Time Min.) 54.0 52.2 60.2 54.9 66 50.0 
Overall (Time Min.) 21.7 21.3 23.0 22.7 26.3 20.2 
Car Distance (Miles) 13.3 12.9 14.6 13.9 17.8 12.1 

Actual 
LA Sites 

Car (Time Min.) 24.3 23.4 26.8 24.3 27.9 22.9 
Transit (Time Min.) 66.8 64.1 76.7 61.7 77.6 64.9 
Overall (Time Min.) 27.9 27.2 30.4 28.1 32.1 26.2 
Car Distance (Miles) 15.1 14.4 17.1 15.1 19 13.9 
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Table 12: Percentage of Car Users Spending More than 30 Minutes by Racial Group (MS = 9) 

 % of Transit Riders Spending Above 30 Minutes One Way 
Latino White Black AI Asian  

F=1 

SC 1 0.24% 1.32% 0.17% 0.89% 0.18% 

SC 2 0.26% 1.56% 0.19% 0.89% 0.22% 

SC 3 0.55% 1.24% 0.23% 1.57% 0.16% 

Actual 4.81% 8.25% 8.29% 15.01% 1.70% 

F=3 

SC 1 4.94% 6.25% 8.40% 14.29% 1.65% 
SC 2 4.89% 6.05% 8.39% 14.22% 1.64% 
SC 3 5.29% 6.87% 8.61% 14.45% 1.81% 

Actual 8.95% 21.15% 12.02% 21.22% 7.80% 

 

Table 13: Percentage of Entire Population Spending More than 30 Minutes by Racial Group (MS =         
9) 

 % of Transit Riders Spending Above 30 Minutes One Way 
Latino White Black AI Asian  

F=1 

SC 1 5.2% 5.6% 5.4% 5.2% 4.0% 

SC 2 4.9% 6.0% 4.5% 5.0% 4.6% 

SC 3 6.4% 5.2% 6.7% 6.2% 3.8% 

Actual 11.0% 13.2% 12.7% 20.3% 7.4% 

F=3 

SC 1 11.9% 12.3% 15.6% 19.9% 8.0% 
SC 2 12.3% 12.4% 16.3% 20.6% 8.5% 
SC 3 12.8% 12.6% 16.8% 20.8% 8.5% 

Actual 16.9% 25.3% 20.6% 26.7% 14.3% 

 
No single solution minimizes travel time for all racial groups, which highlights the 

challenge of a one-size-fits-all approach when selecting vaccination sites.  For instance, 
for F=1, Scenario 2 produces the shortest travel time for Latinos, Black people and Amer-
ican Indians; Scenario 3 produces the shortest travel time for Whites and Asians Ameri-
cans; and Scenario 1 produces the shortest travel time overall. Comparing racial groups, 
Asian Americans experienced the lowest average travel times for the actual sites, but not 
in our optimized solutions.  Several actual sites were concentrated in San Gabriel Valley, 
where many Asians reside.  In the optimized solutions, Latinos and Black people experi-
enced the lowest travel times, due to their prevalence in central Los Angeles, where more 
sites were located when optimized.  American Indians (AI) and Whites tended to expe-
rience the longest travel times, even though they tended to live in zip codes where car 
ownership was higher.  This can be attributed to a tendency to live in more remote and 
less densely populated locations.   

A significant disparity exists between transit and car users across all scenarios. 
Transit users spend more time traveling to sites, exceeding 30 minutes for the majority of 
riders in all scenarios and for all racial groups. For F=3, nearly 100% of transit users, in all 
racial groups and all scenarios, exceed a 30 minute travel time.  This could be due to the 
vast area of LA County and the current public transportation infrastructure, which puts 
those dependent on public transit at a disadvantage.   

When F increases from 1 to 3, travel times increased, especially for transit users. For 
example, 59.3% of transit users spend more than 30 minutes to get to a site when F=1 for 
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Scenario One. This percentage increases to 84.1% when F=3. The same trend can be ob-
served across all scenarios. For car users, the percentage still increases, but less signifi-
cantly. Increasing people's options may provide greater access to vaccines, but at the ex-
pense of longer trips.     

No single scenario universally benefits all racial groups.  For Hispanics/Latinos, the 
travel time is shorter in Scenario Two when the HPI is utilized and worse in Scenario 
Three when the COVID-19 vulnerability index is used. Whites, on the other hand, experi-
ence longer travel times for both car and transit, which could be explained by their resi-
dential patterns, where they often live in less populated suburban areas further away from 
the sites.  

Black people, in most cases, experience shorter travel time than other racial groups. 
This could be due to their presence in urban areas, where populations are higher, and 
public transportation is more accessible and closer to vaccination sites. Asians in LA 
County generally resided within shorter travel times to get vaccinated than Whites. This 
may be due to higher average incomes leading to more car ownership and a tendency to 
live in urban areas closer to vaccination sites. Lastly, American Indians tend to live in 
more rural areas where public transportation is limited and long car trips are needed, 
resulting in higher travel times to get vaccinated. 

Our analysis demonstrates that all three proposed scenarios outperform the actual 
implemented plan for vaccination sites in terms of travel times, distances, and the overall 
percentage of people traveling more than 30 minutes, across all racial groups and the two 
modes of transportation. Significant and measurable improvements are achieved regard-
less of choosing to use population, HPI, or COVID-19 vulnerability as the weighting fac-
tor. These findings emphasize the pivotal role of data-driven strategies in enhancing the 
effectiveness and accessibility of public health resources. 
4. Conclusions 

COVID-19 illustrates challenges in providing equitable and efficient access to vac-
cines at the scale of a metropolitan region.  Whereas establishing many sites for adminis-
tering vaccines naturally reduces travel times to the nearest vaccination site, localized lim-
its of vaccine supply may force individuals to travel to more distant locations.  Thus, it 
may be advantageous to have fewer sites, each with assured supply, than many sites 
where availability is limited.  In our model, as F increases, both travel time increases on 
average and optimized sites converge into clusters.   

 From the perspective of equity, from our analysis of LA County, optimized solutions 
tend to favor vaccination sites in densely populated areas toward the city center.  Because 
these areas in LA County have higher concentrations of Latinos and Black people, they 
tended to have shorter travel times, even after factoring in access to automobiles at the 
household level.  More explicitly considering the HPI and COVID vulnerability did not 
change that outcome, though Latinos, Black people and American Indians were slightly 
better off when HPI based weights were used.  On the other hand, people who do not 
have access to automobiles, regardless of race, are seriously disadvantaged, with much 
longer travel times.  This effect is particularly strong when F is greater than one.  While 
a compelling argument for having many vaccination sites is access for those dependent 
on public transit, that advantage disappears if people must search among many sites to 
find a location with available vaccines.   

In our research, we assumed that the cost of opening a vaccination site is $500,000. 
This number is an approximation and does not consider the variability in actual real estate 
costs across different areas within the LA County. The actual cost of establishing vaccina-
tion sites can vary significantly depending on the location, size, and other factors such as 
rental, renovation and operational costs. Last, we assumed that every zip code contains a 
viable site for mass vaccination. Practical site selection may entail adjustments to nearby 
locations.  Though the actual sites used in LA County were extremely large, such as a 
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stadium and theme park, effective patient scheduling can greatly reduce the need for ac-
commodating large queues, which accounted much more of the utilized space than actual 
vaccine administration. 

 Future research could potentially account for localized and current metrics of disease 
prevalence (e.g., daily or weekly rates of cases and deaths by zip code). The practicality of 
such an approach is limited by data aggregation of statistics, which have been reported at 
the community level rather than zip codes, along with signification fluctuations of case 
and death rates from day to day. Nevertheless, sites might be more precisely located to 
serve areas experiencing disease at the highest rates if public health agencies could track 
data within consistent and small geographic units.   
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