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Abstract

During pandemics, such as COVID-19, supplies of vaccines can be
insufficient to meet all needs, particularly when vaccines first become
available. Our study develops a dynamic methodology for vaccine allo-
cation, segmented by region, age, and timeframe, using a time-sensitive,
age-structured compartmental model. Based on the objective of mini-
mizing a weighted sum of deaths and cases, we used the Sequential Least
Squares Quadratic Programming method to search for a locally opti-
mal COVID-19 vaccine allocation for the United States, for the period
from December 16, 2020, to June 30, 2021, where regions corresponded
to the 50 states in the United States (US). We also compared our solu-
tion to actual allocations of vaccines. From our model, we estimate that
approximately 1.8 million cases and 9 thousand deaths could have been
averted in the US with an improved allocation. When case reduction is
prioritized over death reduction, we found that young people (17 and
younger) should receive priority over old people due to their potential to
expose others. However, if death reduction is prioritized over case reduc-
tion, we found that more vaccines should be allocated to older people,
due to their propensity for severe disease. While we have applied our
methodology to COVID-19, our approach generalizes to other human-
transmissible diseases, with potential application to future epidemics.
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1 Introduction

Vaccination is one of the most important public health interventions for
controlling the spread of infectious diseases. Vaccines work by inducing immu-
nity to a pathogen, thereby reducing the likelihood of transmission and disease.
When a portion of a population is vaccinated and acquire immunity, the like-
lihood of transmission decreases, as the pathogen has fewer hosts in which
to replicate and spread. When a sufficient number of people acquire immu-
nity, it is possible to reach herd immunity, which leads to diminishing rates of
new infections in the population. The degree to which a population must be
vaccinated to reach herd immunity depends on the transmissibility of the dis-
ease and the vaccine efficacy. In general, a higher proportion of the population
needs to be vaccinated for diseases with higher transmissibility.

COVID-19 and its vaccines have led to a renewed interest in transmis-
sion modeling in epidemiology. Modeling the impact of vaccination on disease
transmission is important for understanding the effectiveness of vaccination
programs and designing effective vaccine distribution policies. While the imme-
diate objective of vaccination is individual immunity against specific infectious
agents, it is imperative to orchestrate campaigns to maximize benefits, includ-
ing reduced risk of transmission and reduced risk of severe disease. The age
of the target population is pivotal, as vaccines exhibit varied efficacy and side
effects across age brackets. Rates of transmission and likelihood of severe dis-
ease also very by age. For instance, the initial Pfizer-BioNTech and Moderna
vaccines demonstrated significant effectiveness across all age groups, whereas
the Johnson & Johnson vaccine, while effective against severe disease and
death, has shown marginally lower infection prevention rates [1].

Our paper focuses on the allocation of vaccines across regions and age
group at times when they are in short supply. When vaccines initially became
available in the U.S., in 2021, individuals at the highest risk of severe outcomes,
encompassing the elderly and individuals with comorbidities, were prioritized,
as were healthcare professionals, due to risk of exposure as well as criticality of
occupations. On the other hand, all regions of the U.S. received allocations of
vaccines without explicitly considering whether the regions were experiencing
high or low rates of infections.

In this paper, we introduce a regional transmission model accounting for
age and vaccination statuses, leveraging dynamic modeling with time-varying
parameters to depict disease transmission dynamics. Validated against histor-
ical data from all 50 states, our model captures disease transmission nuances,
offering insights for health policy decisions. We further propose an innovative
vaccine allocation method, accounting for regional disparities in transmis-
sion, population structure, and resource limitations. This dynamic allocation
method seeks to efficiently mitigate disease impact. By analyzing various vac-
cine allocation policies under diverse availability scenarios, our age-structured
dynamic model offers insights into effective disease management strategies,
guiding vaccine distribution. Our research aims to deepen the understanding of
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disease transmission with mathematical modeling while promoting equitable
and efficient resource utilization.

2 Previous Research

This section assesses the role of vaccination in infectious disease models,
using various case studies for illustration, with a focus on COVID-19 in par-
ticular. We also discuss the challenges and strategies in vaccine allocation
during epidemics. Notably, while current models provide significant insights,
there remains a gap in addressing the dynamic nature of disease transmission
and demographic variations. This introduction serves as a roadmap for the
subsequent detailed exploration in Section 3.

2.1 Dynamic Transmission Models with Vaccination
Consideration

The strategic use of vaccinations is pivotal in mitigating pandemics. For
accuracy, disease transmission models must dynamically represent vaccinated
individuals over time and account for real-world vaccine characteristics. This
allows the models to depict both the direct protection conferred upon vacci-
nated individuals and the indirect effects on the broader populace. Much of
the research draws on compartmental modeling, through which a population
is divided into groups represented by their common characteristics. Com-
partmental modeling utilizes differential equations to represent transitions of
individuals between compartments, such as when people become infected or
when they recover from a disease [1]. Several studies have pioneered ways
to represent vaccinated groups and amalgamate vaccine characteristics into
transmission models. Alexander et. al., for instance, compartmentalized the
population into susceptible (S), infected (I), recovered (R), and vaccinated
(V) groups [2]. Some models even introduce an ”exposed” component [3]. This
compartmental approach enables tracking of both vaccinated and unvacci-
nated individuals, taking into account the fact that vaccines might not offer
complete protection. Bai, Song, and Xu’s model from 2021 incorporated the
concept of waning vaccine-induced immunity, which sees vaccinated individuals
eventually reverting to susceptibility [4]. More sophisticated models intro-
duce delays between latent and symptomatic stages of disease, combined with
waning immunity. Such structures represent real-world observations where vac-
cinated individuals might contract the disease but show slower progression
[5]. Wu’s model, analyzing the pneumococcal vaccine’s cost-effectiveness in
Taiwan, distinguished between infected vaccinated and unvaccinated individ-
uals, attributing different hospitalization and mortality rates to each group
[6]. The model also featured a vaccine match parameter, offering insights into
scenarios of well-matched versus poorly matched vaccines. Considering the
diverse nature of human populations, many models factor in heterogeneity and
transmission dynamics. Ko et al. acknowledged this diversity in their study,
classifying the population based on age, occupation, and health status, among
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other factors [7]. Monod’s framework married human mobility and mortal-
ity rates, using age-specific contact patterns to dissect disease transmission
dynamics [8]. Other research has stratified the population into risk groups and
then further segment them into susceptible, vaccinated, infected, and recovered
categories [9]. The underlying assumption in some studies is that vaccination
directly transitions an individual from susceptibility to full recovery, presum-
ing a perfect vaccine [10]. Other models, including research on the human
papillomavirus, emphasize the dynamics between vaccine efficacy, coverage,
and disease transmission [11].

2.2 Vaccine Allocation Methods

The foundation of effective vaccine allocation lies in robust disease trans-
mission models. These models utilize optimization techniques that account for
real-world challenges, such as limited vaccine availability, dosing guidelines,
daily vaccination capacities, and efficacy. Due to the complexities of the under-
lying disease model, it is at present impossible to guarantee global optimality
for an objective of minimizing total number of infections or total number of
fatalities. In place of global optimality, heuristics and localized search methods
have been studied in a variety of publications.

Hill and Longini’s established a mathematical framework to determine
the minimal vaccine doses necessary to curtail an outbreak [12]. Central to
their work is the concept of ”herd immunity,” aiming to maintain an effective
reproductive number below 1. Key factors in establishing this threshold are
the initially susceptible population and the basic reproductive number [13–
15]. Techniques like the ”Minimum Dose with Satisfactory Efficacy” (MDSE)
approach aim to achieve optimal protection levels using minimal vaccine doses,
grounded in empirical data [16].

Recognizing the inherent constraints in vaccine production, research has
evolved to focus on optimizing public health benefits with limited resources.
Medlock and Galvani examined the optimization of influenza vaccine distri-
bution. They utilized a mathematical model to determine the most effective
distribution of vaccines to minimize the overall influenza cases. Their findings
suggest that prioritizing schoolchildren and adults aged 30 to 39 years could
be more effective than the traditional approach of prioritizing the elderly and
high-risk populations [17]. In the context of the COVID-19 pandemic, Meehan
and colleagues used an age-structured mathematical model to investigate the
benefits of optimizing age-specific dose allocation for the COVID-19 vaccine.
Their results indicate that prioritizing individuals between 30 and 59 years of
age can minimize transmission due to their high contact rates and increased
risk of infection. However, to effectively reduce morbidity and mortality, tar-
geting those aged 60 and above is crucial as they are more susceptible to severe
disease [18]. Additionally, González-Parra and team presented two nonlinear
mathematical models to understand the optimal vaccination strategy consid-
ering the case fatality rate and age-structure of the population. Their findings
suggest that in most scenarios, the best approach is to prioritize vaccination
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for individuals aged 55 and above. However, under certain conditions, such as
high transmission rates, it might be more effective to first allocate vaccines to
the 15–54 age group [19].

In the research ”Where to locate COVID-19 mass vaccination facilities?”
by Bertsimas et al.[20], the authors address the complex challenge of optimally
distributing the COVID-19 vaccine, with application to the U.S.. Utilizing a
data-driven approach, they enhance the epidemiological model, DELPHI, to
factor in vaccination effects and mortality rate variability across age groups.
This augmented model then underpins a prescriptive model aimed at identi-
fying optimal vaccination site locations and vaccine allocation strategies. The
problem is technically framed as a bilinear, nonconvex optimization model,
which they tackle using a coordinate descent algorithm. Their methodology,
when benchmarked, potentially improves vaccination campaign effectiveness
by an estimated 20%, equating to around 4,000 additional lives saved in the
US over three months. However, it’s essential to recognize that the practical
effectiveness of such models often depends on the availability of real-time data,
which can be missing or delayed in real-world situations, potentially impacting
their applicability [2].

One standout study segmented population based on age-related risks, eval-
uating various vaccination strategies against metrics like infection rates and
healthcare preparedness [19], [21]. Valizadeh’s research introduces a robust
bi-level optimization model to tackle challenges in the COVID-19 vaccine sup-
ply chain. When tested in Kermanshah, Iran, the model effectively minimized
mortality risk, distribution inequality, and overall costs, providing insights for
improved vaccination management [22].

2.3 Summary and Research Gap

Historically, epidemiological research has shown the importance of vaccina-
tion in controlling infectious diseases, ranging from hepatitis B to COVID-19.
Mathematical models simulating transmission dynamics, with varying granu-
larity in vaccination parameters, have facilitated strategic decision-making and
efficient resource allocation. Nonetheless, existing models could benefit from
the incorporation of time-dependent transmission parameters and the nuanced
effects of age demographics on disease transmission. For instance, Ko’s age-
stratified model for COVID-19 underscores the need for a more differentiated
approach to vaccine allocation, considering the unique dynamics of different
age groups [7]. Though the domain of vaccine allocation optimization has seen
substantial progress, the prevailing models could be augmented by considering
the dynamic nature of disease spread. A spatially-sensitive approach, account-
ing for differential transmission rates across regions, would bolster targeted
vaccine allocation, thereby maximizing the societal benefit.

Building on existing literature, our study bridges several gaps. First, our
method for vaccine allocation, described in Section 3, considers transmission
intensity, population demographics, and constrained distribution resources.
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Second, our transmission model uses a continuous Sigmoid function to repre-
sent dynamic changes in death and transmission rates, reflecting the hypothesis
that these rates change continuously due to evolving changes in human behav-
ior. Third, we are able to solve the complex model to local optimality for
the U.S., allocating vaccines to the 50 states and three age groups, over
seven-month periods. Utilizing reported data on cases, deaths and vaccine
availability, we demonstrate how the model can be applied from the types of
data that were routines collected in the U.S. during the COVID-19 pandemic.

Our comprehensive scenario analysis underscores the potential for adapt-
able vaccine distribution strategies, especially in resource-limited contexts. We
target allocation both demographically and spatially, aiming to guide efficient
resource utilization in the face of infectious diseases.

3 Methodology

This section develops our disease model and explains our solution process.
The model includes multiple components, which are developed from reported
data for COVID-19. Our model aims to provide a represent the interplay
between age-specific transmission dynamics, vaccine rollout, and disease out-
comes. By considering the heterogeneous nature of COVID-19 transmission
and death rates across different age groups and accounting for the impact of
vaccination, we can generate more accurate and nuanced predictions about the
pandemic’s progression. This, in turn, can help inform public health policies
and interventions tailored to the specific needs of each age group, ultimately
contributing to more effective disease control. Initially, an age-structured
SEIRD model is introduced, compartmentalizing individuals into the states:
susceptible, exposed, infected, recovered, and dead. These transitions are
described using differential equations, highlighting the model’s adaptability in
capturing time-sensitive nuances in transmission and death rates. The pop-
ulation is then segmented into distinct age groups, each exhibiting unique
transmission and mortality characteristics. The granularity is further enhanced
by introducing vaccination data into the model, revealing the relationship
between age-based transmission, vaccine rollout, and disease outcomes. To
capture the evolving nature of transmission dynamics, a sigmoid function is
employed, offering a versatile tool to track changes in transmission and death
rates over time. Moving from modeling to decisions, we develop a dynamic
framework for vaccine allocation across the U.S. states. Our framework utilizes
age-structured data and accounts for the effects of vaccination. The model’s
non-linearity, due to implicit ordinary differential equations, is captured with
the Sequential Least Squares Quadratic Programming method, which is used
to search for a locally optimal vaccine allocation.
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3.1 Data Sources

In this study, we will leverage data from the COVID Tracking Project [23]
and OurWorld in Data [24], which provide daily and cumulative figures for con-
firmed cases, deaths, and demographic information related to COVID-19. We
will source vaccination data from the CDC’s COVID-19 Vaccine Distribution
Allocations by Jurisdiction [25], which includes total distribution and admin-
istration figures for the Janssen, Moderna, and Pfizer vaccines, segmented by
jurisdiction and age group. Our analysis spans from December 16, 2020, to
June 30, 2021. It should be noted that, prior to February 12, 2021, the CDC’s
records only reflect the total quantity of vaccines administered state-wide,
without age group differentiation. To address this data gap, we will approxi-
mate the distribution of vaccines among different age groups by applying the
proportional distribution of eligible individuals within each age category, as
stipulated by the prevailing vaccination guidelines at the time.

3.2 Age-structured Dynamic Model with Vaccination

Based on the SEIRD compartmental model, we categorize the population
into five groups: susceptible (S), exposed (E), infected (I), recovered (R), and
dead (D). This model, preferred for its adaptability and simplicity, tracks indi-
viduals’ transitions between these states over time using differential equations.
Initially, everyone is considered susceptible. Upon contact with an infected
individual, one becomes exposed and eventually infected after the incubation
period. Individuals then either recover and gain immunity or succumb to the
disease. Chosen for its inherent flexibility, the SEIRD model offers insights
without the necessity for detailed individual data, often lacking during an
epidemic’s onset.

The transmission of the disease is governed by the transmission rate β(t),
which represents the rate of an infected individual transmitting the disease
to a susceptible individual. The transmission rate is typically assumed to be
constant in the basic SEIR model, but it is modeled as a time-varying param-
eter to capture changes in behavior or the impact of interventions on disease
transmission. Death rate α(t) is also treated as a time varying function, rep-
resenting the proportion of infectious individuals who eventually die from the
disease, by date. Those who eventually die transfer from the infected to the
died state at a rate of ρ, representing the inverse of the time from becoming
infectious until time of death. In our model, ρ is assumed to be constant over
time. Those who eventually recover do so at the γ, representing the inverse
of the time from becoming infectious until recovery. We will also later derive
the effective reproduction number Rep(t), representing the average number of
persons who are exposed to the disease by each infectious person, as a function
of time.

To analyze vaccination’s influence on COVID-19 dynamics, we segment the
population into three age groups: 0-17, 18-64, and 65+. Each group exhibits
distinct transmission and mortality rates. We introduce scalars ωi and τi for
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each age group, quantifying relative transmission and mortality risks compared
to reference groups.

Vaccination is incorporated via a vaccine compartment Vi for each age
group, adjusting the number of susceptible based on vaccination rate and vac-
cine effectiveness θ. This accounts for potential infections among vaccinated
individuals. However, our model omits the vaccine’s impact on death rates
due to data limitations and excludes inter-state movement because of unavail-
able age-specific mobility data. The resulting SEIRD-V model is detailed in
Equation 1.

∂Si(t)

∂t
= −ωi · β(t) · Ii(t) ·

Si(t)− θ · Vi(t)

N
∂Ei(t)

∂t
= ωi · β(t) · Ii(t) ·

Si(t)− θ · Vi(t)

N
− σ · Ei(t)

∂Ii(t)

∂t
= σ · Ei(t)− (1− τi · α(t)) · γIi(t)− τi · α(t) · ρIi(t)

∂Ri(t)

∂t
= (1− τi · α(t)) · γ · Ii(t)

∂Di(t)

∂t
= τi · α(t) · ρ · Ii(t)

(1)

where:

Si(t) = number of susceptible individuals in age group i at time t
Ei(t) = number of exposed individuals in age group i at time t
Ii(t) = number of infectious individuals in age group i at time t
Di(t) = number of recovered individuals in age group i at time t
Ri(t) = number of dead individuals in age group i at time t
Vi(t) = number of individuals vaccinated in age group i at time t
N = total population size
β(t) = effective contact rate, a measure of how many people to whom an
infected person can transmit the disease at time t
α(t) = fraction of infectious individuals detected and isolated at time t
σ = rate at which exposed individuals become infectious
γ = recovery rate of infected individuals
ρ = fatality rate among infected individuals
ωi = scalars representing the difference in transmission rate between age
groups i with respect to age group 2
τi = scalars representing the difference in fatality rate between age groups
i with respect to age group 3

3.3 Age-structured Dynamic Model with Vaccination

α(t) and β(t) can vary over time due to changes in human behavior. A natu-
ral function to represents patterns of change is the Sigmoid function. Equation
2 is the general form of the Sigmoid function, where k determines the slope of
the function and a determines the x value at the middle point (i.e., point of



Springer Nature 2021 LATEX template

10 Dynamic Vaccine Allocation for Control of Human Transmissible Disease

time when y=.5).
S(x) = 1/(1 + ek(x− a)) (2)

Thus, we define the function for transmission rate and death rate as Equation
3 and Equation 4.

β(t) = βend +
βstart − βend

1 + em(x−a)
(3)

α(t) = αend +
αstart − αend

1 + en(t−b)
(4)

where:

βstart is the starting reproduction number
βend is the ending reproduction number
αstart is the starting death rate, ranging from 0 to 1
αend is the ending death rate, ranging from 0 to 1
m,n, a, b are shape parameters

Parameters will be estimated with the objective of minimizing the weighted
summation of squared error between cumulative predicted and measured con-
firmed cases and the summation of squared error between cumulative predicted
and cumulative confirmed deaths. The best fitted values for each parameter
is solved by the Levenberg–Marquardt algorithm (LMA), which is a combina-
tion of the steepest descent method and the Gauss-Newton method [26]. Our
analysis encompasses the period from the day of the first reported case in each
state until July 28, 2020, covering all 50 American states. For each state, we
selected a start date four days prior to the date of the first confirmed case, in
accordance with a report by the Centers for Disease Control and Prevention
(CDC), which indicates that the median incubation period is 4 days, with a
range of 2 ∼ 7 days.

3.4 Vaccine Allocation with Dynamic Transmission

In this section, we propose a dynamic framework to allocate vaccines among
50 states in the United States, taking into account the transmission patterns
and the impact of vaccination on disease transmission and death rates.

3.4.1 Porblem Formulation

In Section 3.2, we developed a transmission model incorporating vacci-
nation data to provide reasonably accurate estimates of COVID-19 cases
and deaths across different age groups and states. The model considers age-
structured case and death data, vaccine data, and time-varying transmission
and death rates, accounting for the effects of vaccination on susceptible pop-
ulations in each age group. The fitting results demonstrated that the model
effectively captured the historical trends of COVID-19 cases and deaths and
the impact of vaccination on these trends.

Building upon this transmission model, we now aim to allocate vac-
cines among the 50 states. The objective function is defined as the sum of
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the weighted case numbers and death numbers. The constraints are the bi-
weekly available amount of vaccination for each state. Equation 5 provides our
formulation:

min
Vi,t

∑
i,t

w1 · Casesi,t + w2 ·Deathsi,t

s.t.
∑
i

Vi,t ≤ Qt ∀t

∂Si(t)

∂t
= −ωi · β(t) · Ii(t) ·

Si(t)− θ · Vi(t)

N
∂Ei(t)

∂t
= ωi · β(t) · Ii(t) ·

Si(t)− θ · Vi(t)

N
− σ · Ei(t)

∂Ii(t)

∂t
= σ · Ei(t)− (1− τi · α(t)) · γIi(t)− τi · α(t) · ρIi(t)

∂Ri(t)

∂t
= (1− τi · α(t)) · γIi(t)

∂Di(t)

∂t
= τi · α(t) · ρIi(t)

Casesi,t = Ii(t) +Ri(t) +Di(t)

Deathsi,t = Di(t)

(5)

Where V(i, t) refers to the vaccine number in region i at time t, Qt refers to
the total amount of available vaccine on day t, w1 and w2 are the weight the
policymaker put on the case number and death number. The dynamic nature
of the formulation lies in the fact that it considers the evolving transmission
patterns and vaccination rates over time.

3.4.2 Solution Process

We utilized the Sequential Least Squares Programming optimizer (SLSQP)
method [27], a gradient-based optimization algorithm, for vaccine allocation.
The SLSQP algorithm is well-suited for our problem because it can handle
both equality and inequality constraints and is capable of solving nonlinear
optimization problems with a large number of variables.

To illustrate the SLSQP solving process, let’s first consider the optimiza-
tion problem, which aims to minimize the weighted sum of cases and deaths
over a specific time horizon. The decision variables are the bi-weekly vaccine
allocations for each state and age group, subject to constraints on the total
available vaccines and the maximum vaccination capacity of each state. The
SLSQP algorithm starts with an initial guess for the decision variables (i.e., the
bi-weekly vaccine allocations) and iteratively updates these values to reduce
the objective function. At each iteration, the algorithm computes the gradi-
ent of the objective function with respect to the decision variables, which is
essential for updating the decision variables in the right direction.
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In this context, the gradient computation is challenging due to the implicit
nature of the objective function, which depends on the solution of ordinary
differential equations (ODEs) describing the transmission dynamics. To cal-
culate the case/death numbers in the objective functions and the gradient
with respect to the decision variables, we must first solve the ODEs. Tradi-
tional third-party ODE solvers, such as the odeint function provided by the
SciPy library, utilize the fourth-order Runge-Kutta method for accuracy. This
method approximates the daily increments with a sufficiently small step size.
However, the transmission rate and death rate of the disease will remain con-
stant within the same day, and the implicit formulation of the fourth-order
Runge-Kutta method makes it challenging for the algorithm to find the deriva-
tives with respect to the decision variables, potentially leading to gradient
vanishment.

To address this issue, we utilize Euler’s method, a first-order numerical
method for solving ODEs, instead of the fourth-order Runge-Kutta method.
By employing Euler’s method, we can calculate the weekly case and death num-
bers with fixed decision variables (i.e. bi-weekly allocated vaccination for each
state). This approach allows for a more straightforward computation of the
gradient, avoiding the complexities associated with higher-order ODE solvers
like the Runge-Kutta method.

Once the gradient is computed, the SLSQP algorithm updates the decision
variables by moving in the direction of the negative gradient, which corre-
sponds to the steepest descent in the objective function. The algorithm also
takes into account the constraints on vaccine availability, ensuring that the
updated decision variables are feasible. This iterative process continues until
the algorithm converges to a solution that minimizes the objective function,
subject to the constraints.

The SLSQP-based optimization framework offers a systematic approach to
search for the optimal distribution of vaccines among the 50 regions and 3
age groups, taking into account the dynamic nature of transmission patterns,
vaccine availability, and state capacities. The dynamic vaccine allocation algo-
rithm produces an improved distribution of vaccines, considering the regional
transmission patterns and the impact of vaccination on disease transmission
and death rates.

In summary, Euler’s method helps solve the highly nonlinear optimization
problem with implicit ODEs. The SLSQP method for solving the optimization
problem ensures that the algorithm can find the derivatives with respect to
the decision variables, enabling an effective solution method. By incorporating
regional transmission patterns and the impact of vaccination on disease trans-
mission and death rates, the proposed framework enables a more targeted and
efficient allocation of vaccines.
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4 Results

In the results section, focusing on the United States, we first present
the accuracy of the Age-Structured Dynamic Model’s predictions, focusing
on COVID-19 transmission across three pivotal age groups using vaccination
data. Model accuracy provides insights into state-wise and age-specific pan-
demic trends, reflecting variations influenced by factors like vaccination rates
and public health adherence. We next provide our vaccine allocation results
under varying vaccine availability scenarios. Through examination of diverse
allocation methods, we analyze the specific outcomes tied to each strategy.
The scenarios range from a hypothetical absence of vaccination to a potential
tenfold increase in vaccine availability.

4.1 Fitting Results

Figure 1 and Figure 2 summarize the model fitting accuracy of the trans-
mission model with vaccination for three age groups (0-17, 18-64, and 65+)
across all 50 states in the United States from December 16, 2020, to June 30,
2021. The model’s accuracy is measured by the relative root mean square error

(RRMSE) (defined as RRMSE =
[
∑N

i=1(ŷi−yi)
2/N ]

1/2

yN
for both the number of

COVID-19 cases and deaths within each age group for each state.

Fig. 1 RRMSE across age groups for Covid-19 cases in all 50 states

Fitting accuracy varies across states and age groups, which may be
attributed to factors such as differences in state-level vaccination rates, adher-
ence to public health guidelines, population density, and other regional factors
influencing transmission and death rates. On average, the RRMSE for the num-
ber of cases is 0.092 for the 0-17 age group, 0.080 for the 18-64 age group, and
0.078 for the 65+ age group. The average RRMSE for the number of deaths is
0.009 for the 0-17 age group, 0.073 for the 18-64 age group, and 0.038 for the
65+ age group.



Springer Nature 2021 LATEX template

14 Dynamic Vaccine Allocation for Control of Human Transmissible Disease

Fig. 2 RRMSE across age groups for Covid-19 deaths in all 50 states

We note that the RRMSE is sometimes lower for cases than deaths. This
is a byproduct of situations where reported deaths were very small, sometimes
even zero, in certain states, age groups and time periods. Such low counts can
produce high RRMSE values, even when absolute errors are low. For example,
in the 0-17 age group, COVID-19-related deaths were rare throughout the
country, and therefore hard to predict within a small percentage error.

The lower fitting accuracy for certain states may also be attributed to the
discrete daily variation of administered vaccines. Daily fluctuations in vacci-
nation numbers can add complexity to the modeling process, making it more
challenging for the model to generate smooth transmission rate and death rate
functions that accurately capture historical trends. This issue can be particu-
larly pronounced in states with inconsistent vaccination rollouts or disruptions
due to supply chain issues, logistical challenges, or changes in vaccine eligi-
bility criteria. In such cases, the model may struggle to accurately account
for the impacts of these fluctuations on overall transmission and death rates.
The daily variation in administered vaccines can lead to inconsistencies in the
model’s predictions, which may contribute to lower fitting accuracy observed
in some states.

In summary, the model fitting results demonstrate that incorporating vac-
cination data into a transmission model can provide reasonably accurate
estimates of COVID-19 cases and deaths across different age groups and
states. The model’s varying accuracy across states highlights the importance
of considering regional factors when evaluating its performance and potential
improvements. Despite its limitations, the transmission model with vaccination
data offers valuable insights into the progression of the COVID-19 pandemic in
the United States, particularly in terms of age-specific trends. By accounting
for the effects of vaccination and different age group transmission dynamics,
our model can help inform public health policies and interventions that are
tailored to the specific needs of each age group.
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4.2 Vaccine Allocation under Different Scenarios

In this section, we provide results for vaccine allocation under varied vac-
cine availability scenarios, addressing the period from December 16, 2020, to
June 30, 2021 in the U.S. We allocate vaccines by U.S. state, time interval
and age group, where age groups are 0-17 years, 18-64 years and 65+ years.
Although youth and children were not initially eligible for vaccination, our
analysis considers the benefits that would have occurred if they became eligi-
ble earlier in time. The study period, representing a time when vaccines were
in short supply, was divided biweekly (i.e. the vaccine is distributed among
states biweekly). By exploring diverse vaccine allocation methods, we aim to
understand the ramifications of different prioritizations and vaccine quantities.
Evaluating different distribution scenarios allows us to weigh the advantages
and disadvantages of prioritizing specific age groups or regions versus focusing
on broader coverage. We included analyses of these scenarios:
1. No vaccines.
2. Vaccine allocation with supplies matching actual availabilities, where:

(a) Prioritizing case reduction, by setting PARAMETER = 0, or
(b) Prioritizing death reduction, by setting PARAMETER = 0.

3. Vaccine allocation with 10 times actual availability.
By starting with a baseline scenario of zero vaccine availability, we establish
baseline to gauge the effectiveness of actual vaccine allocations. This baseline
understanding is instrumental in discerning the merits of vaccine policies. To
explore the best vaccine distribution policy, we can consider different scenarios
of vaccine availability. For each scenario, the age-structured dynamic model
with vaccination can be used to simulate the impact of various distribution
strategies on the number of cases and deaths.

Our simulations and allocations were run on Google Colab, with the hard-
ware of Intel Xeon CPU with 2 vCPUs (virtual CPUs) and 13GB of RAM.
The simulation of the no vaccination scenario took approximately 312 min-
utes to run 25 iterations. The allocation simulations for case reduction and
death reduction with original and 10-times vaccine allocation policies took 370
minutes and 420 minutes to run 25 iterations.

4.2.1 Healthcare Outcomes without Vaccination

The hypothetical situation of zero vaccines allows us to understand the
effectiveness of the historical vaccine distribution by comparing the case and
death numbers under this scenario to the real historical data. By simulating
the age-structured dynamic model with no vaccination, we can estimate the
number of cases and deaths that would have occurred if no vaccines were
distributed.

The results from this analysis show that the historical vaccine distribu-
tion has had a significant impact on reducing the spread of the virus and
saving lives. In the absence of any vaccine distribution, the model estimates
that there would have been an additional 1,827,631 cases and 9,180 deaths



Springer Nature 2021 LATEX template

16 Dynamic Vaccine Allocation for Control of Human Transmissible Disease

between December 16, 2020,and June 30, 2021. Our findings highlight the cru-
cial role that vaccines have played in mitigating the severity of the pandemic
and demonstrate the importance of an effective vaccine distribution strategy.

4.2.2 Vaccine Allocation Policy with Original Vaccine
Availability

In the second scenario, we explore the re-allocation of a constant quantity
of vaccines among the 50 states and among aged groups to achieve better
healthcare outcomes while considering the dynamic transmission patterns in
each state. To address this issue, we analyzed vaccine allocation under two
different prioritizations: reducing the number of cases as much as possible and
reducing the number of deaths as much as possible.

When focusing on case reduction, a larger share of vaccines were distributed
to the youngest age group (0-17 years, Figure 3). This is because younger
people are generally more active and have more frequent social interactions,
leading to a higher potential for spreading the virus. Additionally, younger
individuals may exhibit milder symptoms or be asymptomatic, making them
more likely to unknowingly transmit the virus to others. By prioritizing this age
group, the overall transmission rate within the population can be significantly
reduced, ultimately lowering the total number of cases. In this prioritization,
the focus is on reducing the spread of the virus, leading to an overall decrease
in cases and, consequently, a lower number of associated deaths. According to
the model results, this allocation strategy reduced 2,042,312 cases and 1,796
deaths.

Fig. 3 Vaccine allocation comparison for case-prioritized vaccine optimization with original
vaccine availability
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When prioritizing reduction of deaths, more vaccines are allocated to both
the younger age group (0-17 years) and the older population (65+ years), who
face a higher risk of severe illness and death from COVID-19. The middle age
group receive fewer vaccines. While this allocation strategy prioritizes death
reduction, cases as are also reduced because even a reduction of cases among
young ultimately save lives of vulnerable people, who are less likely to con-
tract the disease. according to the model results, this allocation strategy could
reduce 220,010 cases and 6,319 deaths.

The results of the second scenario demonstrate that a more targeted vaccine
allocation strategy, considering the dynamic transmission patterns can lead
to significantly better health outcomes. By shifting the vaccine distribution
towards age groups that have the most significant impact on transmission and
death rates, it is possible to achieve substantial reductions in both cases and
fatalities.

Fig. 4 Vaccine allocation comparison for death-prioritized vaccine optimization with orig-
inal vaccine availability

Figure 5 and Figure 6 show the redistribution of original amount of vaccine
among 50 states for case prioritized and death prioritized allocations. Some
states, like Maine, Vermont, Montana, South Dakota, and New Hampshire,
receive more vaccines. These states generally have smaller populations, fewer
resources, and limited healthcare infrastructure, particularly in rural areas,
which can affect their ability to quickly identify, treat, and manage cases. An
increased allocation of vaccines could help to compensate for these limitations
by reducing the number of severe cases that require hospitalization and spe-
cialized care. Moreover, the low population density and sparse distribution of
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the population in these states create challenges in vaccine distribution and
administration, leading to slower immunization rates. Increasing the allocation
of vaccines to these states can help overcome logistical challenges and ensure
that more people receive the vaccine. Additionally, the age distribution of the
population in these states may play a role in the increased need for vaccines,
as some have a higher proportion of older adults who are at greater risk of
severe illness and death due to COVID-19. Prioritizing vaccine allocation to
these states can help protect their most vulnerable citizens and reduce fatali-
ties. Lastly, the effectiveness of public health policies and their implementation
varies between states, and those with a higher need for vaccines may have less
stringent public health measures or lower compliance.

Fig. 5 Redistribution of original amount of vaccine among 50 states for case-prioritized
scenario (Change of the vaccine distribution divided by original vaccine number)

4.2.3 Vaccine Allocation Policy with 10 Times Original
Vaccine Availability

In the third scenario, we explore the impact of a substantial increase in
vaccine availability, specifically 10 times the original weekly availability, and
assuming all vaccines are administered. For this scenario, both our ”before”
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Fig. 6 Redistribution of original amount of vaccine among 50 states for death-prioritized
scenario(Change of the vaccine distribution divided by original vaccine number)

and ”after” cases allocate 10 times as many vaccine doses as actually occurred.
The before case allocates vaccines in the same proportions as actual, whereas
our after case utilizes our allocation methodology. This scenario represents
the allocation for a vast increase in vaccines and the corresponding healthcare
outcomes, given this significant increase in resources. Similar to the second
scenario, we analyze the vaccine allocation policy under two different priori-
tizations: reducing the number of cases as much as possible and reducing the
number of deaths as much as possible.

The vaccine allocation results for both prioritizations remain consistent
with the second scenario, shown in Figure 7 and Figure 8. To reduce cases,
vastly more vaccines are allocated to the younger age group (0-17 years) due
to their role in driving overall case numbers. Additionally, prioritizing the
vaccination of the older population is recommended if policymakers emphasize
the reduction in fatalities. This demonstrates the robustness of the allocation
strategies across different levels of vaccine availability.

According to the model results, the allocation strategy could potentially
reduce 2,561,885 cases and 6,735 deaths when prioritizing the reduction of
cases. Although this represents a significant reduction in case numbers, the
increment in vaccination resources only leads to an additional reduction of
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519,573 cases. This is primarily because, even with 10 times the vaccine avail-
ability for each week, the available amount of vaccine is still too small to
control the epidemic during the first several months. The limited vaccination
resources at the beginning of a new wave of transmission makes it difficult to
substantially reduce the number of cases once the disease has spread widely
throughout the population.

Fig. 7 Vaccine allocation comparison for case-prioritized vaccine optimization with 10 times
vaccine availability

In contrast, prioritizing deaths produces an estimated reduction of
1,537,008 cases and 16,014 deaths, leading to an additional 9,695 lives saved.
These finding highlights that, even though a 10-fold increase in vaccines may
not result in a dramatic decrease in case numbers, it can still have a substantial
impact on saving lives. The allocation of sufficient vaccines can protect vul-
nerable populations, particularly the older population, who are at the highest
risk of severe illness and death from COVID-19.

When analyzing the third scenario, it is crucial to acknowledge the inher-
ent limitations of increasing vaccine availability. A 10-fold increase in weekly
availability was not attainable due to production constraints and logisti-
cal challenges. Nonetheless, this scenario provides insights into the potential
impact of increased vaccination resources on the overall health outcomes during
the pandemic.
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Fig. 8 Vaccine allocation comparison for death-prioritized vaccine optimization with 10
times vaccine availability

5 Conclusions

In this paper, we have presented an age-structured dynamic model that
incorporates vaccination data, providing a more accurate and nuanced under-
standing of disease transmission dynamics among different age groups. We have
also proposed a novel method for optimizing vaccine allocation across regions,
taking into consideration the varying transmission severity, population struc-
tures, and limited resources for vaccine distribution. By analyzing different
vaccine allocation policies under various scenarios of vaccine availability, we
have provided insights into effective strategies for managing disease and miti-
gating impact on public health. We have also developed a tool that could be
used in practice for allocating vaccines by geographic and demographic group
for maximum public health benefit. By periodically running the model, allo-
cations could be adjusted as new data become available as to rates of cases
and deaths by location, age, or other demographic factors.

Our work has demonstrated the importance of data-driven and adaptable
vaccine allocation policies in managing the ongoing pandemic and safeguard-
ing public health. By incorporating regional transmission patterns, population
structures, and the impact of vaccination on disease transmission and death
rates, our age-structured dynamic model with vaccination and optimization
framework offers a valuable tool for public health authorities and policymakers
to make informed decisions on vaccine distribution.

The analysis of different vaccine allocation policies under various scenarios
of vaccine availability highlights the need for targeted and strategic vaccine
distribution, particularly when resources are limited. By prioritizing the most
vulnerable populations and targeting age groups that play a significant role
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in virus transmission, it is possible to achieve substantial reductions in both
cases and fatalities.

New human transmissible diseases are likely to emerge in future years.
When that happens, efforts will resume to create vaccines that are effective at
controlling disease transmission and reducing instances of severe disease. Our
age-structured dynamic model with vaccination and optimization can serve as
a foundation for future research and decision-making, as new data becomes
available and new challenges arise. The ongoing refinement and application of
our model will help inform evidence-based decision-making for vaccine allo-
cation and distribution, contributing to a better understanding of disease
transmission dynamics and providing a more efficient and equitable use of
limited resources.

In summary, our work contributes to understanding of the complex
interplay between age-specific transmission dynamics, vaccine rollout, vari-
ations among regions and disease outcomes. By developing and applying
our age-structured dynamic model with vaccination, we hope to inform vac-
cine allocation and distribution strategies, helping to minimize the effects of
infectious diseases on populations with efficient use of limited resources.
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