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Abstract 11 

This paper develops and applies an enhanced SEIRD (Susceptible-Exposed-Infectious- 12 
Recovered-Death) model with time-varying case fatality and transmission rates for the COVID-13 
19 pandemic. Our aim is to accurately characterize time-variations in transmission and fatality 14 
rates relative to reported cases and deaths with a function that utilizes a small set of parameters.  15 
The time-varying functions, when integrated into the SEIRD model, efficiently characterize 16 
dynamic changes in fatality and transmission rates, which result from public health interventions, 17 
changes in medical care, changing human behaviour, and potential changes in the virus itself.  18 

Introduction 19 

COVID-19 has challenged the world to react to a new contagious virus in the absence of 20 
effective medical treatment and vaccines. Over the course of the two years of the pandemic from 21 
the outbreak in December 2019, when the first cases were confirmed in Wuhan, China, until 22 
March 24th 2022, 213 countries and territories reported nearly 490 million confirmed cases and a 23 
death toll exceeding 6 million persons [1]. Waiting for effective clinical care and vaccination, 24 
countries reacted to the pandemic by controlling travel, implementing large-scale quarantine, 25 
restricting gatherings, requiring hygiene measures and screening for possible cases.  26 

Shaw and Kennedy’s examination of reproduction numbers (called the R value) [2], illustrates 27 
how rates of disease transmission can change over time as a consequence of changes in human 28 
behavior that alter rates of contact between infected and susceptible people, and alter probability 29 
of infection upon exposure.  The authors also illustrate how rates of transmission (and hence 30 
reproduction numbers) depend on contact behavior within regions or localities.  In each example, 31 
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variation in human behavior over time and space affects disease transmission and rates of new 32 
infections.   33 

Compared to the global SARS epidemic in 2002 and MERS in 2012, COVID-19 has a relatively 34 
long incubation period, originally estimated to have a mean time of 5 days [3], [4]. COVID-19 35 
was also found to be transmissible while individuals are asymptomatic. Meanwhile, disease 36 
severity is widely variable, depending on age, comorbidities, baseline health and access to care. 37 
Even those with mild or no symptoms, often young adults, may transmit the disease to others. 38 
These factors, combined with limited testing and inconsistent adherence to public health 39 
measures, made the virus impossible to contain. Policymakers are also facing a dilemma, 40 
balancing the goal of maintaining economic activity against saving lives through strict measures, 41 
learning about the effectiveness of interventions and the nature of the disease.  42 

The paper aims to improve the understanding of how COVID-19 is spread by developing a 43 
variation of the Susceptible-Exposed-Infected-Recovered-Death (SEIRD) model. Our novel 44 
innovation is representing the transmission rate and case fatality rate as continuously varying 45 
Sigmoid functions of time. The functions are optimally fit to historical data on confirmed cases 46 
and deaths. The functions, when integrated into the SEIRD model, reflect the various factors that 47 
can affect the spread of COVID-19, such as the implementation of public health interventions, 48 
changes in medical care, changing human behavior, and potential changes in the virus itself, 49 
which can affect transmission rates and death rates. We applied our model to all 50 American 50 
states to derive insights into how the disease has spread in different localities, which is 51 
influenced by population health, disease exposure, localized public health interventions and 52 
messaging, in addition to other place specific factors.  53 

Prior Research 54 

Prior research on COVID-19 has estimated disease-specific parameters, such as the basic 55 
reproduction number and latent period [5]–[9], demonstrating why the disease is highly 56 
transmissible. Mathematical models have also been used to analyze transmission scenarios for 57 
communicable disease and inform policy makers of possible futures and the effects of 58 
interventions. For example, according to a statistical guideline model published in 2015 [10], the 59 
state of New York reacted to the urgent shortage of ventilators by requesting more ventilators 60 
from the federal government and implementing new interventions, such as closures of schools 61 
and restaurants [11]. 62 

Another use of disease transmission models has been to predict and plan for future demands on 63 
the healthcare system, such as demands for hospital beds (ICU in particular) and needs for health 64 
care resources, such as ventilators. Toward that goal, [12] provides a statistical model of death 65 
data to predict future fatalities, assuming that social distancing measures are maintained. From 66 



Working Paper 2023 

the projected fatality data, they estimated hospital utilization with an individual-level 67 
microsimulation model based on the historical statistics of age-specific ICU admission. [13] 68 
simulates the COVID-19 outbreak, parameterized with the US population demographics, with a 69 
compartmental model under different scenarios of self-isolation, projecting hospital utilization 70 
and recognizing the mitigation effect of self-isolation on hospital capacity. 71 

Due to the limits of testing methods, the long incubation period, and cases with mild or no 72 
symptoms and delayed reporting, there is potentially a huge (and unknown) number of 73 
unreported cases, which could affect the future evolution of the epidemic. Some researchers, 74 
therefore, have used the SIR (symptomatic-infectious-recovered) model and SEIRD to estimate 75 
the number of undetected cases [14]–[17]. Some approaches also incorporate transportation 76 
information (such as human migration data and community mobility data) to analyze the impact 77 
of travel on disease transmission and thus the effect of travel restriction [18]–[21]. However, 78 
studies using typical SEIRD or SIR typically assume the transmission rate and death rate to be 79 
constant over time.  80 

With changes in human behavior, clinical treatment and intervention policies, the transmission 81 
and fatality rate vary over time. Therefore, SEIRD models with constant parameters cannot 82 
accurately depict the spread of disease. Some researchers have considered time dependency of 83 
transmission parameters. One approach is to multiply “modulate factors” and transmission 84 
parameters, where the modulate factors vary with respect to the intervention policy. For example, 85 
Ray et al. extend the SIR model by introducing a time-varying transmission rate modifier 𝜋𝜋(𝑡𝑡) to 86 
modify the basic transmission rate 𝛽𝛽, where 𝜋𝜋(𝑡𝑡) is determined by the in-home isolation rate and 87 
in-hospital isolation rate together [22]. Another approach is to represent transmission rate 𝛽𝛽 by a 88 
piecewise function, with discrete values 𝛽𝛽𝑖𝑖,𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑤𝑤 = 1, … ,𝑛𝑛 representing corresponding time 89 
periods ∆𝑡𝑡𝑖𝑖. Piccolomini et al. compare two piecewise time-dependent infection rate functions 90 
and fit the infection rate function, incubation period, and death rate for each uniformly divided 91 
time interval [23]. In another paper, Santamaŕia and Hortal utilize segmented regressions to 92 
create a piecewise time-dependent model for reproduction numbers within 16 Spain regions [24].  93 
Jonas et al. used a Bayesian Markov Chain Monte Carlo method to infer the 𝛽𝛽𝑖𝑖 for each time 94 
period and then identify potential changing points in the spread of COVID-19.  95 

Some researchers have used a precise functional form for the time variation of transmission 96 
parameters. Godio et al. modified the recovery rate to a sinusoidal function with six parameters 97 
and adjusted the transmission rate according to mobility trends [25]. Cotta et al proposed an 98 
exponentially decreasing form of transmission rate: 𝛽𝛽(𝑡𝑡) = 𝛽𝛽0𝑒𝑒𝑒𝑒𝑝𝑝−𝛾𝛾(𝑡𝑡−𝑡𝑡𝑥𝑥), where 𝛽𝛽0 is the 99 
transmission rate without any intervention, and 𝑡𝑡𝑥𝑥 is the time when the interventions are 100 
implemented [26].Cotta further simulated different intervention measures through five different 101 
scenarios and pointed out that improving sanitary habits, with more intensive testing for 102 
isolation, is essential to contain the disease.  Li et al. introduces a novel epidemiological model, 103 
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DELPHI, which captures the impact of under-detection and government intervention on the 104 
spread of COVID-19 [27]. The model, applied across 167 geographical areas, has successfully 105 
predicted large-scale epidemics and has been used to analyze the effectiveness of various 106 
government interventions. The authors find that mass gathering restrictions and school closings 107 
were among the most effective measures in reducing the rate of infection during the early stages 108 
of the pandemic. One problem with the four approaches is the introduction of many parameters 109 
to depict time dependency, thus risking overfitting and increasing the computational cost when 110 
analyzing multiple regions at the same time. Further, the exponentially decreasing form of 111 
transmission rates may be too restrictive, as it demands that rates of change in transmission 112 
decline continuously. For these reasons, we will focus on a function that is neither overly general 113 
(subject to over-fitting) nor as restrictive as the exponential form.  114 

In our research we investigate the use of a concise formulation through which continuously time 115 
varying transmission and case fatality rates are modeled with a small number of parameters that 116 
fit reported data. Like [9], [28]–[30], we utilize a type of logistic function (i.e., a Sigmoid 117 
function), but not simply to model reported cases or model reported deaths over time, but to 118 
instead model both reproduction rate and case fatality rate within an integrated SEIRD model (a 119 
version of which we initially developed in 2020 [31]). Our innovation is to improve the classical 120 
SEIRD model through an approach that adapts to the dynamic pattern of transmission under 121 
different epidemic scenarios. Thus, we provide insights into transmissibility of the disease while 122 
modeling historical data on confirmed cases and confirmed deaths in 50 states of the US. 123 

The Proposed Time Varying Model 124 

We draw from the SEIRD compartmental model, which divides the population into five groups: 125 
susceptible(S), exposed(E), infected(I), recovered(R) and dead(D). SEIRD utilizes differential 126 
equations to model the evolution of the number of people in these states over time. Susceptible 127 
individuals can catch the virus through contact with infected people and transition into the 128 
exposed state. Exposed people are in a latent state until they progress to the infectious state, 129 
occurring at a rate inversely proportional to the incubation period (thus, exposed is defined as a 130 
state in which people are not yet infectious). Infected people eventually progress into either the 131 
dead state, if they succumb to the disease, or into the recovered state, with different rates. Those 132 
who have recovered are assumed to be no longer susceptible to contracting the disease in the 133 
SEIRD model. 134 

We introduce death rate 𝛼𝛼(𝑡𝑡) as a time varying function, representing the proportion of 135 
infectious individuals who eventually die from the disease, by date t. Those who eventually die 136 
transfer from the infected to the dead state at a rate of 𝜌𝜌, representing the inverse of the time 137 
from becoming infectious until time of death. In our model, 𝜌𝜌 is assumed to be constant over 138 
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time. Those who eventually recover do so at the rate 𝛾𝛾, representing the inverse of the time from 139 
becoming infectious until recovery. We will also later derive the effective reproduction 140 
number𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡), representing the average number of persons who are exposed to the disease by 141 
each infectious person, as a function of time. Taking these factors into account, the system of 142 
equations of the proposed SEIRD model is given by Equation (1): 143 

 144 
𝑑𝑑S(t)

dt
= −β(𝑡𝑡) ∙ 𝐼𝐼(𝑡𝑡) ∙

𝑆𝑆(𝑡𝑡)
𝑁𝑁

 145 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= β(𝑡𝑡) ∙ 𝐼𝐼(𝑡𝑡) ∙
𝑆𝑆(𝑡𝑡)
𝑁𝑁

− σ ∙ 𝑑𝑑(𝑡𝑡) 146 

𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑡𝑡

= σ ∙ 𝑑𝑑(𝑡𝑡) − �1 − α(𝑡𝑡)� ∙ γ𝐼𝐼(𝑡𝑡) − α(𝑡𝑡) ∙ ρ ∙ 𝐼𝐼(𝑡𝑡) (1) 147 

𝑑𝑑𝑅𝑅(𝑡𝑡)
𝑑𝑑𝑡𝑡

= �1 − α(𝑡𝑡)� ∙ γ ∙ 𝐼𝐼(𝑡𝑡) 148 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= α(𝑡𝑡) ∙ ρ ∙ 𝐼𝐼(𝑡𝑡) 149 

where: 150 

𝑆𝑆(𝑡𝑡) = number of people in susceptible state at time t 151 

𝑑𝑑(𝑡𝑡) = number of people in exposed, but uninfected at time t 152 

𝐼𝐼(𝑡𝑡) = number of people in infectious state at time t 153 

𝑑𝑑(𝑡𝑡) = number of people who have died at time t 154 

𝑅𝑅(𝑡𝑡) = number of people who have recovered at time t 155 

N = total number of people  156 

𝛽𝛽(𝑡𝑡) = transmission rate at time t 157 

𝜎𝜎 = transformation rate from exposed to infectious, which is the reciprocal of the 158 
incubation period 159 

𝛼𝛼(𝑡𝑡) = likelihood of eventual death of a person who is infected at time t 160 

𝛾𝛾 = transformation rate from infectious to recovered, which is the reciprocal 161 

of the recovery time 162 

𝜌𝜌 = transformation rate from infectious to dead 163 

Changes in intervention policy, global events and medical care affect 𝛼𝛼(𝑡𝑡) and 𝛽𝛽(𝑡𝑡). While, in 164 
theory, these functions may change erratically as a consequence of discrete events, such as new 165 
public health measures, we hypothesize that such discrete events do not suddenly alter either 166 
function. Therefore, we seek to understand whether a simple continuous model, with a minimal 167 
set of parameters, might accurately represent historical data. For illustration, at the enactment of 168 
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a new intervention policy, the public may not react suddenly, and neither do the transmission 169 
parameters. The public may become used to the policy after a period of adaptation, and 170 
eventually the effective reproduction number will stabilize. In addition, the public responds to 171 
both government policies and communication about the disease. Communication comes from 172 
many, sometimes conflicting, sources. How the public at large absorbs and responds to such 173 
often confusing messages may be gradual. 174 

A natural function to describe this pattern of change is the Sigmoid function. Equation (2) is the 175 
general form of the Sigmoid function, where 𝑘𝑘 determines the slope of the function and 𝑎𝑎 176 
determines the x value at the middle point (i.e., point of time when y=.5).  177 

𝑆𝑆(𝑒𝑒) =
1

1 + 𝑒𝑒𝑘𝑘(𝑥𝑥−𝑎𝑎) (2) 178 

Thus, we define the function for transmission rate and death rate Equation (3) and (4). 179 

β(𝑡𝑡) = 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 +
𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 − 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒
1 + 𝑒𝑒𝑚𝑚∙(𝑥𝑥−𝑎𝑎)  (3) 180 

𝛼𝛼(𝑡𝑡) = 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 +
𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 − 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒
1 + 𝑒𝑒𝑒𝑒∙(𝑡𝑡−𝑏𝑏)  (4) 181 

where, 182 

 𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 is the starting reproduction number  183 

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 is the ending reproduction number  184 

𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 is the starting death rate, ranging from 0 to 1 185 

𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 is the ending death rate, ranging from 0 to 1 186 

𝑚𝑚,𝑛𝑛,𝑎𝑎, 𝑏𝑏 are the shape parameters 187 

Note that the Sigmoid function does not generalize to instances where rates both decline and 188 
increase over time. Such situations demand a multi-phase model, as discussed later. 189 
Nevertheless, as we will show, the sigmoid function produces low error rates in predicting cases 190 
and deaths in the early months of the pandemic in the United States. 191 

Parameter Estimation and Model Fitting 192 

Parameters in Eqs. 1 were estimated with the objective of minimizing the weighted summation 193 
of squared error between cumulative predicted and measured confirmed cases and the summation 194 
of squared error between cumulative predicted and cumulative confirmed deaths. Our analysis is 195 
based on the period from the day of first reported case in each state until 07/28/2020, across all 196 
50 American states. For each state of the United States, we chose a start date of 4 days prior to 197 
the date of the first confirmed case. Four days was chosen based on the information from CDC 198 
[4]. 199 
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Two methods were used for different sets of parameters, as described below. To estimate the 200 
shape parameters 𝑚𝑚,𝑛𝑛,𝑎𝑎, 𝑏𝑏 and the starting/ending parameters 𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡,𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒,𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 , we fit 201 
Eqs. 1 to the cumulative confirmed case numbers and the cumulative confirmed death numbers 202 
with the nonlinear least square method. Other parameters were derived from prior research.   203 

Parameters Derived from Prior Research 204 

As mentioned in the other studies [32]–[34], the median incubation period was 4 days. Among 205 
305 hospitalized patients and 10,647 recorded deaths, the median time of hospitalization was 8.5 206 
days and the median interval from illness onset to death was 10 days (IQR =6 - 15 days). We 207 
assume the median hospitalization time is the median time for infectious people to stop being 208 
contagious. Hence, we set these parameters as the inverse of these time values: 𝜎𝜎 =  1/4, 𝛾𝛾 =209 
 1/8.5,𝜌𝜌 =  1/10.  210 

Parameters Derived from Optimization 211 

The remaining parameters are derived for each American state by optimizing the fit of the model 212 
to historical case and death data, where the objective is to minimize a weighted sum of daily 213 
squared error over the analysis period. We utilized a search algorithm that required initialization 214 
and a constrained search space, as explained below.  215 

We define the model function M(t; [𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡,𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚,𝑎𝑎,𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛, 𝑏𝑏]): 𝑡𝑡 → 𝑅𝑅2, where M(t; 216 
[𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡,𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚,𝑎𝑎,𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛, 𝑏𝑏]) = [𝐼𝐼(𝑡𝑡) + 𝑅𝑅�(𝑡𝑡) + 𝑑𝑑�(𝑡𝑡),𝑑𝑑�(𝑡𝑡)] and the reported case number 217 
and death number at time t is [Cases(t), Deaths(t)]. Because it is unlikely for transmission and 218 
death rates to change drastically in a single day, we set upper bounds for 𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 at 0.33 219 
(meaning that rates do not suddenly change in less than three days) and initialize the search at 220 
0.25. We permit the turning point of the sigmoid function to occur on any day in the timeline; we 221 
set 𝑎𝑎, 𝑏𝑏 ∈ [0,125], where 125 is the length of the period from March 1st to July 28th, in days (as 222 
of March 1 few states had reported cases). Prior research suggests that the initial effective 223 
reproduction number is around 3 [7], equivalent to a transmission rate of 0.75, which we use for 224 
initialization. Because transmission rates vary significantly among locations due to local 225 
conditions (such as crowding), we bound 𝛽𝛽𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ∈ [0.5,7.5] and 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 ∈ [0,2.5], thus permitting a 226 
wide range of results. 227 

To summarize, the parameters set 𝑃𝑃 = [β𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡, β𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚,𝑎𝑎,𝛼𝛼𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛, 𝑏𝑏] is initialized as 228 
[0.75,0.5,0.25,10,0.4,0.1,0.25,10]. Then the parameter optimization problem is formulated in 229 
Equations (5): 230 

𝑚𝑚𝑤𝑤𝑛𝑛𝑃𝑃‖𝑀𝑀(t;𝑃𝑃) − [𝐶𝐶𝑎𝑎𝐶𝐶𝑒𝑒𝐶𝐶(𝑡𝑡),𝑑𝑑𝑒𝑒𝑎𝑎𝑡𝑡ℎ𝐶𝐶(𝑡𝑡)]‖22 (5) 231 
𝐶𝐶. 𝑡𝑡.        0.5 ≤ β𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 ≤ 7.5 232 

0.1 ≤ β𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 2.5 233 

0 ≤ αstart ≤ 1 234 
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0 ≤ α𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 1 235 
0.01 ≤ 𝑚𝑚 ≤ 0.33 236 
0.01 ≤ 𝑛𝑛 ≤ 0.33 237 

0 ≤ 𝑎𝑎 ≤ 125 238 
0 ≤ 𝑏𝑏 ≤ 125 239 

The number of reported deaths is smaller than the number of reported cases in all locations. 240 
Thus, treating errors in death estimation and case estimation the same will lead to underfitting of 241 
the death data, in preference to minimizing the errors in case data. Therefore, considering the 242 
accuracy of the reported death data and the fitting accuracy, we optimized a weighted sum of 243 
squared death and case data, multiplying w by deaths during the fitting process. The adjusted 244 
objective function is shown as Equation (6): 245 

mi𝑛𝑛𝑝𝑝 ��𝐼𝐼(𝑡𝑡) + 𝑅𝑅�(𝑡𝑡) + 𝑑𝑑�(𝑡𝑡) − 𝐶𝐶𝑎𝑎𝐶𝐶𝑒𝑒𝐶𝐶(𝑡𝑡)�
2

+ 𝑤𝑤 ∗ �𝑑𝑑�(𝑡𝑡) − 𝑑𝑑𝑒𝑒𝑎𝑎𝑡𝑡ℎ𝐶𝐶(𝑡𝑡)�
2
�
2

(6) 246 

The parameters are estimated by solving the nonlinear constrained least-squares problem in 247 
Equation (5), utilizing the Levenberg–Marquardt algorithm (LMA). The LMA algorithm 248 
adaptively varies the parameter updates between the gradient descent update and the Gauss-249 
Newton update and accelerates to a local minimum [31]. The LMA is implemented to our model 250 
fitting by the lmfit package in Python. In our analysis we utilized w = 20 to yield similar error 251 
percentages for deaths and cases.  252 

Data Limitations 253 

We recognize that reported cases and deaths are not the same as actual infections and actual 254 
deaths, which are unknowable. Daily confirmed cases are influenced by widely varying testing 255 
rates and policies, which change over time. At the beginning of the epidemic, the limited test kits 256 
were restricted to those who suffer from severe symptoms and those who are in a higher risk of 257 
exposure. Death data was likely to be more accurate but can suffer from reporting errors, due to 258 
how deaths are attributed to COVID-19 (or not), the timing of filing reports and the general 259 
accuracy of reporting. For these reasons, our model is fit to reported data.  260 

Reporting has also shown a consistent day-of-week variation across many locations, with 261 
weekend data differing from weekday data. This variation is more likely the consequence of 262 
different patterns of healthcare staffing, and differences in how patients present for testing by 263 
day of the week, rather than differences in disease transmission by day of the week. To smooth 264 
out these effects, we model the moving 7-day average data instead of the daily reported data. 265 
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Results  266 

Model Accuracy 267 

The first case of COVID-19 in the United States was reported on January 20, 2020 [35]. As of 268 
July 31, 2020, a total of 4,665,469 cases and 155,863 deaths had been reported across the states 269 
and territories of America [36].We fit the model with the dataset of 7-day moving average cases 270 
and deaths for the 50 states, provided by the COVID-19 tracking project led by The Atlantic 271 
(derived from the Centers for Disease Control), for the period from the date of the first reported 272 
cases to July 31st. The fitting accuracy across all states is presented in Figure 1, measured by the 273 
relative root mean square error (RRMSE) (explained in Supplementary Materials S1). 274 

The fitting accuracy of the reported cases ranges from 0.54% to 7.34% and of the reported deaths 275 
ranges from 0.29% to 7.28%. The average and median RRMSEs for deaths are 1.61% and 276 
1.33%; for cases, the average and median values are 2.30% and 1.88%. RRMSE fell below 5% 277 
by both measures for all states except Hawaii, Idaho, Louisiana, Montana and Wyoming.  278 

 279 
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 280 
Figure 1: Relative root mean squared error (RRMSE) for case and death data across all states 281 

Figures 2 and 3 show the specific fitting results for cases and deaths by day for the two states 282 
with the largest number of cases (New York and California) as well as two other states for which 283 
the fit is less accurate (Florida and Hawaii). For New York and California, the fitting results 284 
closely coincide with CDC data. Examining Florida and Hawaii, the CDC data follows a pattern 285 
of two phases, which is not as well captured by our model. For Hawaii, the curve flattened for a 286 
period and then rose. As discussed later, our basic model characterizes the transmission dynamic 287 
for a period with one phase (i.e. the curve should become flat at most once) but can be modified 288 
as a multi-phase model. 289 
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Figure 2: Fitting results for case data: New York, California, Florida and Hawaii 290 

  

  

Figure 3: Fitting results for death data: New York, California, Florida and Hawaii 291 
Effective Reproduction Number Calculation and Trends 292 

Effective reproduction number at any time t, which we define as 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡), is the average number 293 
of people in a population who are infected per infectious case, where everyone is susceptible to 294 
the disease. 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) measures the transmission potential of infectious diseases [37]. When 295 
𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) > 1, the rate of new cases will increase over time, until the population loses 296 
susceptibility to the disease. When 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) < 1, the rate of new cases will decline over time. 297 

𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) 𝑐𝑐an be estimated with the next-generation matrix method (explained in Supplementary 298 
Material S2) [38], [39].  299 

At the beginning of the epidemic, 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) reflects the natural transmissibility of COVID-19, i.e. 300 
the basic reproduction number 𝑅𝑅0 in the absence of intervention. With the evolution of the 301 
epidemic, 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) changes dynamically, as do the transmission rate 𝛽𝛽(𝑡𝑡) and death rate 𝛼𝛼(𝑡𝑡), 302 
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which are influenced by both the intervention policy and population immunity. Figures 4 and 5 303 
show the fitted 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) at the start of the epidemic across all states (defined by first reported 304 
case) and fitted 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) on July 31st. We see that 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) ranges from 1.27 to 16.49, with a 305 
median value of 2.87. We found that by July 31st, the reproduction number had fallen below 1 in 306 
all 50 states, with a median value of 0.37. It should be kept in mind that this optimal fit is a 307 
reflection of the reported data on cases and deaths. Increasingly aggressive testing may cause 308 
rates of reported cases to grow faster than the rate of growth for actual infections.  309 

 310 
Figure 4: Fitted 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) on the date of first reported case across all 50 states 311 

 312 
Figure 5: Fitted 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) on July 28th across all 50 states 313 

For illustration, Figure 6 shows our estimated history of 𝑅𝑅𝑒𝑒𝑝𝑝(𝑡𝑡) for New York, California, 314 
Florida and Hawaii. Time 0 in these graphs is the day of the first reported case, which varies 315 
from state to state. In these cases, the effective reproduction number both stabilized and became 316 
smaller than 1 with time, with the change occurring over a period of 10 to 30 days.   317 
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Figure 6: Estimated effective reproduction number (R) by date: New York, California, Florida and Hawaii 318 
As noted, in the early stages of an epidemic, the reproduction number may seem particularly 319 
large not only because the disease spreads rapidly but also because the rate of testing is 320 
increasing.  321 

Death Rate Trends 322 

Death rate is another measure that shows the change in virus outcomes over time, reflecting the 323 
health system’s ability to deal with the flood of infected people. Figure 7 provides examples. 324 
From the historical plot, we see the hardest-hit states, like New York and Florida, experienced a 325 
much higher death rate in the early stage than the average 3% death rate in the United States. The 326 
relatively high death rate could be caused by the lack of effective medical treatment and hospital 327 
overload. It could also reflect limited testing of patients, whereby only the sickest patients were 328 
recorded as cases. With improvement of medical treatment, and increased testing, the death rate 329 
per confirmed case for most states decreased to a much smaller value.   330 
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Figure 7: Predicted death rate (𝛼𝛼) by date: New York, California, Florida and Hawaii 331 
Multi-Phase Model 332 

Our model fits reported cases and deaths within 2% error in most states. However, because the 333 
model is premised on the assumption that transmission rates do not at first go down, and then 334 
later go up, it needs to be modified for states that exhibit multiple waves of the disease within the 335 
study period. Data for Hawaii – for which the model has the poorest fit – indicate this pattern.  336 

For such locations, we propose an alternate multi-phase model. The Hawaii Department of 337 
Health announced the first positive case on Oahu, Hawaii, on March 6th, 2020, and then 338 
immediately enacted a stay-at-home order on March 25th. From April 19th to May 7th, the case 339 
curve flattened. The state announced on May 7th that Hawaii would embark on the first phase of 340 
reopening. The data reflect a second wave of coronavirus commencing on or about May 7. 341 

We divide the Hawaii timeline into two periods, the first from March 6th until May 7th, and the 342 
second from May 7th to July 28th. We fit the first stage with the initialization of one exposed 343 
people at the start. To initialize the second phase, we use the predicted number of exposed, 344 
infectious and recovered people from the first phase, combined with the reported deaths as of 345 
May 7th. With this modification, the RRMSE for cases declines below 2.5% and the RRMSE for 346 
deaths declines below 2.7%. The fitting results in Figure 8 show that our two-phase model 347 
captures the transmission pattern more precisely than the single-phase model. 348 
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Figure 8: Two phase fitting results for Hawaii (left graphs phase 1, right graphs phase 2) 349 
The histories for estimated (two-phase) effective reproduction number and death rate are shown 350 
in Figure 9. The first phase showed a decline in the reproduction number after the initial 351 
announcement of the stay-at-home order. However, with the reopening, the reproduction number 352 
increased, explaining increases in case rates. Death rates, by contrast, exhibit a peculiar 353 
behaviour, increasing over time in each phase, with a discontinuity when transitioning from the 354 
first phase to the second. Beyond exhibiting two phases, Hawaii has a small number of deaths, 355 
with no deaths occurring in the transition period between phases. We surmise that the function, 356 
while representing the data well, is peculiar because of the unusual pattern in deaths within 357 
Hawaii. 358 

 359 

 360 

 361 

 362 

 363 
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Figure 9: Estimated effective reproduction number and death rate by date for two phase model (left graphs phase 1, 364 
right graphs phase 2) 365 

To summarize, our time-varying model produced comparatively small error rates for most states 366 
when fit to historical data. Over the time period studied, the reproduction rate of disease declined 367 
in most states, which was characterized well by the Sigmoid function for transmission rate. The 368 
multi-phase model improves the fit to historical data in states that demonstrated both a decline 369 
and increase in transmission during the study period, as demonstrated for Hawaii. As has been 370 
apparent during the pandemic, both increases and decreases are possible, as public health rules 371 
and human behaviour change over time. 372 

Conclusions 373 

We have developed an extension of the SEIRD model that represents dynamic changes in death 374 
and transmission rates over time using a continuous Sigmoid function, under the hypothesis that 375 
these rates change continuously, rather than immediately upon implementation of public health 376 
policies or treatments.  377 

We showed that the model fit historical data for the United States well for most states for the 378 
early months of the pandemic, with a median RRMSE of 1.33% for deaths and 1.88% for cases 379 
among the 50 states.  We found that the reproduction number varied between 1.27 and 16.49 at 380 
the start of the pandemic among the 50 states, with a median of 2.87, meaning that case rates 381 
were growing throughout the country.  By July 28, the reproduction rate fell below 1 in all 50 382 
states, with a median of 0.37, meaning case rates were dropping throughout the country. Our 383 
time-varying model tracked the underlying changes in transmission rates, as well as death rates, 384 
that occurred during that six-month period.   385 

Those states with poorer fits experienced multiple waves of the disease. Using Hawaii as an 386 
example, we showed that a multi-phase extension of the model provides a more accurate fit, 387 
where the transition from one phase to the next is defined by changes in public health policy, 388 
disease variants or behaviour that affect rates of transmission or case death rates. Using just two 389 
phases, the RRMSE for cases dropped to 2.5% and the RRMSE for deaths dropped to 2.7%   390 
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An advantage of our model is the small number of parameters needed to depict dynamic changes 391 
in transmission and death rates. Thus, the model provides an efficient method for quantifying 392 
differences among regions, and over time, in the spread and outcomes of the disease.  By 393 
examining historical trends, the model can be applied to analyze how variations in simple 394 
parameters can lead to fewer or more cases and deaths.  395 
In the future, we intend to investigate ranges of uncertainty in parameters, and also apply the 396 
model in the optimization of vaccine distribution. We will also develop multi-region extensions 397 
of the model, which represent spread of disease from one region to another, or perhaps within 398 
sub-regional groups. In all of these examples, representation of transmission and death rates with 399 
a small number of parameters can be the foundation for more complex analyses. 400 

Our research models case and death data as they are reported. We recognize that the true number 401 
of cases may differ from reported values, as might the number of deaths. The variations from 402 
state to state reflect, in part, the actual spread and outcomes of disease, the extent to which cases 403 
are detected and reported, and how deaths have been classified. Throughout the COVID-19 404 
pandemic, data accuracy has challenged all efforts to model the spread of the disease.  405 
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